JACK PINE TAPER MODEL ANALYSIS IN BOREAL FOREST OF ABITIBI-TEMISCAMING

Rouyn-Noranda

Dec. 2007

1

JACK PINE TAPER MODEL ANALYSIS IN BOREAL FOREST OF ABITIBI-TEMISCAMING

 STEM TAPER
 SAPWOOD TAPER
 EFFECT OF STAND DENSITY ON THE STEM AND SAPWOOD TAPERS

Introduction

- Why sapwood and heartwood study?
 for the biologists and ecologists:
 - sapwood area is directly related with leaf area;
 - sapwood volume is a living component of wood that respires and stores waters and nutrients for the tree.
 - for the engineers and technologists of wood:
 - predict wood volume and lumber yield.
 - Sapwood and heartwood proportions are important quality parameters for several processing operations including drying, impregnation, pulping, gluing and finishing.

Introduction

Distortions of the wood after drying process according to the place of the piece in the log. (Joly and More-Chevalier. 1980)

6

Introduction

Effects of *Eucalyptus nitens* heartwood in kraft pulping. (mariani et al., 2005)

Objectives

- Predict sapwood and heartwood proportion using indirect measures (direct measurement is expensive and destructive)
- Determine how the size and shape of the sapwood and heartwood of Jack pine (*Pinus banksiana* Lamb.) depend on tree size and stem form;
- Focus on the taper analysis which based on allometry theory (relationship between the size and shape of an organisme).
- Analyse the effect of stand density on the shape and the taper of jack pine stem and sapwood.

DATA:

- 5 stands in Abitibi-Temiscaming boreal's forest
- 60 sampled trees (12 trees/stand);
- Destructive sampling;
- Measurements at 0.30, 1.0, and 1.3 (BH)
- Measurement intervals = 1m (above BH);

Materials (continued)

measured parameters:

- DoB_{BH}: Diameter at breast height outside bark (mm);
- DiB_{BH} (also noted D): diameter at breast height inside bark (mm);
- H: total height (m);
- h : Height above ground level (m);
- d : Diameter inside bark at a height « h » (mm);
- CB: height to crown base (m);
- CL: Crown lenght (m);
- D_{HW}: Heartwood diameter (mm) at a height « h »;
- D_{SA}: Sapwood diameter (mm) at a height « h ».
- **Deducted parametres**:
- $%SA = 100*D_{SA}/d; %HW = 100*D_{HW}/d;$
- sa (Heartwood area (cm²) at a height « h ») = $\pi D_{HW}^2/4$ (excentricity was neglected);
- SA_{BH}: Sapwood area at breast height.

Part 1: Stem taper analysis

Fitting models tested (9 models):

- Group1: single taper models:
 - Polynomial:
 - Model 1: Munro (1966): $\left(\frac{d}{D}\right)^2 = a_1 a_2 \cdot \left(\frac{h}{H 1.3}\right)$

 $a_1 a_2$ fitting coefficients to be estimated.

- Model 2: Kozak et al. (1969) $\left(\frac{d}{D}\right)^2 = b_1 \cdot (T-1) + b_2 \cdot (T^2-1)$
 - T = h/H, $b_1 b_2$ fitting coefficients to be estimated
- Model 3: Bennett and Swindel (1972)

 $\frac{d}{D} = c_1 X + c_2 \frac{(H-h) \cdot (h-1.3)}{D} + c_3 \frac{(H-h)(h-1.3)H}{D} + c_4 \frac{(H-h)(h-1.3)(H+h+1.3)}{D}$ X = (H - h)/(H - 1.30), $c_1 c_2 c_3 c_4$ fitting coefficients to be estimated

- Power function model: • Model 4: Ormerod (1973) $\frac{d}{D} = \left(\frac{H-h}{H-1.3}\right)^{e_1}$
 - e_1 coefficients to be estimated. • Model 5: Newberry and Burkhart (1986) $\frac{d}{D} = f_1 \left(\frac{H-h}{H-1.3}\right)^{3/2}$ f_1, f_2 coefficients to be estimated

METHODS

Part 1: Stem taper analysis (continued)

- Group 2: segmented taper models
 - Model 6: Max and Burkhart (1976); quadratic-quadratic segmented polynomial model

$$\left(\frac{d}{D}\right)^{2} = h_{1}(T-1) + h_{2}(T^{2}-1) + h_{3}(h_{5}-T)^{2} \cdot I_{1} + h_{4}(h_{6}-T)^{2} \cdot I_{2}$$
$$I_{1} = \begin{cases} 1 \to ifT \le h_{5} \\ 0 \to ifT > h_{5} \end{cases} \qquad I_{2} = \begin{cases} 1 \to ifT \le h_{6} \\ 0 \to ifT > h_{6} \end{cases}$$

T = h/H, $h_1 h_2 h_3 h_4 h_5 h_6$ coefficients to be estimated.

 Model 7: Parresol et al (1987); quadratic segmented polynomial model

$$\begin{pmatrix} \frac{d}{D} \\ I \end{pmatrix} = Z^{2} \left(k_{1} + k_{2} \cdot Z \right) + \left(Z - k_{5} \right)^{2} \cdot \left[k_{3} + k_{4} \left(Z + 2k_{5} \right) \right] \cdot I$$

$$I = \begin{cases} 1 \to ifZ \ge k_{5} \\ 0 \to ifZ < k_{5} \end{cases}$$

Z= (H-h)/H, $k_1 k_2 k_3 k_4 k_5$ coefficients to be estimated.

14

Part 1: Stem taper analysis (continued)

Group 3: variable exponent models

- Model 8: Kozak (1988) $d = m_{1} \cdot D^{m_{2}} \cdot m_{3}^{D} \cdot \left[\frac{1 - \sqrt{T}}{1 - \sqrt{p}}\right]^{m_{4} \cdot T^{2} + m_{5} \cdot Log(T + 0.001) + m_{6} \cdot \sqrt{T} + m_{7} \cdot e^{T} + m_{8} \cdot \left(\frac{D}{H}\right)]$

T = h/H, $m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8$ coefficients to be estimated

- Model 9: Kozak (2004)

$$d = n_{1} \cdot D^{n_{2}} \cdot H^{n_{3}} \cdot \left[\frac{1 - T^{\frac{1}{3}}}{1 - P^{\frac{1}{3}}}\right]^{n_{4} \cdot T^{4} + n_{5} \cdot \left(\frac{1}{e^{/H}}\right) + n_{6} \cdot \left(\frac{1 - T^{\frac{1}{3}}}{1 - p^{\frac{1}{3}}}\right)^{0.1} + n_{7} \cdot \left(\frac{1}{D}\right) + n_{8} \cdot H^{1 - \left(\frac{h}{H}\right)^{\frac{1}{3}}} + n_{9} \left(\frac{1 - T^{\frac{1}{3}}}{1 - p^{\frac{1}{3}}}\right)^{\frac{1}{3}}$$

T = h/H, $n_1 n_2 n_3 n_4 n_5 n_6 n_7 n_8 n_9$ coefficients to be estimated

15

Part 2: Sapwood taper analysis
Fitting models tested (8 models):
Group1: polynomial models
Model 1: Bennett and Swindel (1972)

$$SA_{BH} = X_1 + a_1 \frac{X_2}{SA_{BH}} + a_2 \frac{X_3}{SA_{BH}} + a_3 \frac{X_4}{SA_{BH}}$$

 Model 2: Bennett and Swindel (1972) modified by Maguire and Batista (1995)

$$\begin{aligned} sa'_{SA_{BH}} &= (b_1 D + b_2 H + b_3 CR) \cdot \frac{X_2}{SA_{BH}} + (b_4 CR) \cdot \frac{X_3}{SA_{BH}} + (b_5 (H_D) + b_6 CB) \cdot \frac{X_4}{SA_{BH}} \\ \begin{cases} X_1 &= (H - h)/(H - 1.37) \\ X_2 &= (H - h)(h - 1.37) \\ X_3 &= H(H - h)(h - 1.37) \\ X_4 &= (H - h)(h - 1.37)(H + h + 1.37) \end{cases} CR: \text{ crown ratio} = CL/H \\ a_1 a_2 a_3 b_1 b_2 b_3 b_4 b_5 b_6 \text{ coefficients} \\ to be estimated \end{cases}$$

Part 2: Sapwood taper analysis (continued)

Group2: segmented polynomial models

Model 3: Walters-Hann (1986) quadratic-quadratic segmented polynomial model

$$SA_{BH} = 1 + Z_1 + c_1 Z_2 + c_2 Z_3$$

Model 4: Walters-Hann (1986) *cubic-quadratic segmented polynomial* $\frac{sa}{SA_{BH}} = 1 + Z_1 + f_1Z_2 + f_2Z_3 + f_3Z_4$

$$\begin{cases} Z_{1} = I[A(1+B)-1] & c_{1} c_{2} f_{1} f_{2} \\ Z_{2} = X + I[A(X+JB)-X] \\ Z_{3} = X^{2} + I[JA(2X-J+JB)-X^{2}] \\ Z_{4} = X^{3} + I[J^{2}A(3X-2J+JB)-X^{3}] \\ J = 0.03(CB-1.37)/(H-1.37) \\ I = \begin{cases} 1 \rightarrow ifX > J \\ 0 \rightarrow ifX \leq J \end{cases} \end{cases}$$

 $f_1 c_2 f_1 f_2 f_3$ coefficients to be estimated

$$\begin{cases} A = (X - 1)/(J - 1) \\ B = (J - X)/(J - 1) \\ X = (h - 1.37)/(H - 1.37) \end{cases}$$

17

Part 2: Sapwood taper analysis (continued)

METHODS

- Model 5: Max and Burkhart (1976) quadratic-quadratic segmented polynomial model

$$\frac{sa}{SA_{BH}} = e_1(X-1) + e_2(X^2-1) + e_3(J-X)^2 I$$
$$I = \begin{cases} 0 \to ifX > J\\ 1 \to ifX \le J \end{cases}$$

J=0.90H X=(h-1.37)/(H-1.37) $e_1 e_2 e_3 \text{ coefficients to be estimated}$

Part 2: Sapwood taper analysis (continued)

- Group 2: variable exponent models - Model 6: Kozak (1988) $sa/SA_{BH} = X^{C}$ $\begin{cases} X = (1 - \sqrt{Z})/(1 - \sqrt{p}) \\ Z = h/H \\ p = (1.37/H) \\ C = h_1Z + h_2Z^2 + h_3Ln(Z + 0.001) + h_4\sqrt{Z} + h_5(D/H) \\ h_1h_2h_3h_4h_5 coefficients to be estimated \end{cases}$
 - Model 7 : Kozak (1988) modified by Maguire and Batista (1995) $\frac{sa}{SA_{BH}} = X^{C}$

$$C = k_1 Z + k_2 \sqrt{Z} + k_3 \left(\frac{D}{H}\right) + k_4 CL + k_5 CR + k_6 CB$$

$$k_1 k_2 k_3 k_4 k_5 k_6 \text{ coefficients to be estimated}$$

Part 2: Sapwood taper analysis (continued)

group 3: trigonometric taper model
 Thomas-parresol (1991)

$$\frac{sa}{SA_{BH}} = m_1(X - 1) + m_2 \sin\left(\frac{3\pi}{2}X\right) + m_3 \cot\left(\frac{\pi X}{2}\right)$$

 $X = \frac{h}{H}$ m₁ m₂ m₃: coefficients to be estimated;

Used statistical analysis methods

- taper analysis : → proc nlin; (SAS Institute Inc. 2001) method of iteration: GAUSS-NEWTON;
- multicollinearity diagnostic : condition number $< \sqrt{1000}$;
- generalized coefficient of determination: $R_g^2 = 1 \frac{\sum (pred obs)^2}{\sum (pred \overline{obs})^2}$
- The Akaike information criterion: $AIC = 2k + \ln(RSS / n)$
- Autocorrelation...?;
- smoothing curve: Locally-Weighted Scatterplot Smoothing (LOWESS) technique;

Stem taper analysis: fit statistics for the models

MODELING DATA SET (n= 44 trees)					VALIDATION DATA S (n= 16 trees)			FA SET	
model	MSE	R ² g	ME	SD	condition number	AIC	R ² g	ME	SD
1	0.0039	0,9634	-0,0021	0,0410	32,5950	-5758,69	0,9591	-0,0026	0,0435
2	0.0039	0,9615	-0,0046	0,0428	16,5020	-5744,14	0,9575	-0,0055	0,0450
3	0.0014	0,9691	0,0004	0,0375	32,5950	-5740,14	0,9696	0,0015	0,0375
4	0.0017	0,9617	0,0019	0,0420	32,5950	-6585,49	0,9580	0,0008	0,0439
5	0.0039	0,9353	0,0592	0,1100	32,5950	-5757,95	0,9309	0,1185	0,1116
6	0.0036	0,9670	-0,0011	0,0387	88,6350	-5814,85	0,9642	-0,0019	0,0405
7	0.0119	0,9619	0,0651	0,0518	45,6610	-4599,42	0,9571	0,0645	0,0543
8	0.0032	0,9687	0,0010	0,0375	16,5000	-5945,16	0,9694	0,0017	0,0375
9	0.0035	0,9625	0,0008	0,0412	32,4780	-5840,45	0,9647	0,0021	0,0404

Stem taper analysis: parameter estimates for the tested models

	MODEL	Parameter	estimation	SE	MODEL	Parameter	estimation	SE
	1	a1	1.0969	0.00335	7	k1	2.6659	0.1581
		a2	1.0376	0.00661		k2	-1.8050	0.3047
						k3	-3.9328	7.6041
	2	b1	-1.1664	0.0188		k4	2.2167	3.3049
		b2	0.0676	0.0156		k5	0.5914	0,3548
	2							
	3	c1	0.9985	0.00185	8	m1	0.7317	0.1711
	3 11 1	c2	0.1031	0.00456		m2	1.1509	0.1247
		c3	-0.0101	0.000343		m3	0.9931	0.00698
		c4	0.00470	0.000149		m4	-0.8970	0.2838
		10)				m5	0.2730	0.0685
	4	e1	0.5337	0.00328		m6	-2.5968	0.5465
		-1				m7	1.4468	0.3087
	5	F1	1.0055	0.00302		m8	0.1864	0.0182
= 11		f2	1.0440	0.00913				
	- 101				9	n1	0.2258	0.0478
	6	h1	-5.6553	2.0912		n2	0.3466	0.0557
	3 8/	h2	2.6557	1.1546		n3	1.5771	0.1056
		h3	-3.2925	1.0984		n4	0.5976	0.0462
		h4	1.4934	0.2427		n5	-1.0097	0.0662
		h5	0.7931	0.0471		n6	1.2253	0.0257
		h6	0.3542	0.0481		n7	3.5362	0.3259 24
	1					n8	0.0232	0.00137
	1 (a>=0					n9	-0.4636	0.0135

which model should be chosen?

Recommended model

• Model 8: Kozak (1988)

RESULTS

$$d = m_1 \cdot D^{m_2} \cdot m_3^D \cdot \left[\frac{1 - \sqrt{T}}{1 - \sqrt{p}}\right]^{\left[m_4 \cdot T^2 + m_5 \cdot Log (T + 0.001) + m_6 \cdot \sqrt{T} + m_7 \cdot e^T + m_8 \cdot \left(\frac{D}{H}\right)\right]}$$

 $m_1 = 0.7317, m_2 = 1.1509, m_3 = 0.9931, m_4 = -0.8970, m_5 = 0.2730, m_6 = -2.5968$ $m_7 = 1.4468, m_8 = 0.1864$

- No Risk of multicollinearity (Condition Number = $16,50 < \sqrt{1000}$)
- Model Application: Counting collected wood volume

$$V = \frac{\pi}{4} \int_{0.3}^{H} d^2 \cdot dh$$

27

Sapwood taper analysis: fit statistics for the models

	FITTING DATA SET						VALIDATION DATA SET		
	MSE	R^2_{g}	ME	SD	condition number	AIC	R^2_{g}	ME	SD
model1	0.0109	0,8767	0,0002	0,1041	37,3450	-4698,96	0,4306	0,6704	0,3292
model2	0.0111	0,8712	0,7136	0,2659	30,3390	-4679,50	0,4796	-18,9516	16,8036
model3	0.0116	0,8662	0,0052	0,1049	29,8120	-4622,37	0,8439	-0,0101	0,1184
model4	0.012	0,8511	0,7260	0,2845	***	-4533,81	0,8278	-0,0020	0,1237
model5	0.0117	0,8656	-0,0073	0,1075	7417,1928	-4619,06	0,8436	-0,0108	0,1186
model6	0.0304	0,8163	0,7163	0,2755	34,3317	-3621,50	0,8604	0,0049	0,1112
model7	0.0307	0,8263	0,0024	0,1128	659,0128	-3614,69	0,8571	-0,0112	0,1151
model8	0.0142	0,8509	0,7266	0,2853	29,4489	-4407,68	0,8286	0,0108	0,1278

Sapwood taper analysis: parameter estimates for the tested models

Model	Parameters	estimation	SE	Model	Parameters	estimation	SE
1	a1	0.4931	0.1049	6	h1	-6.0846	0.7944
	a2	-0.0803	0.00803		h2	3.5706	0.3537
	a3	0.0389	0.00348		h3	-0.0134	0.0360
					h4	3.3460	0.4820
2	b1	0.000028	5.977E-6		h5	0.0257	0.00429
	b2	-0.00047	0.000084				
	b3	0.6242	0.6212	7	k1	2.9063	0.2214
	b4	-0.0296	0.0411		k2	-3.5461	0.3246
1 2 90	b5	0.0976	0.0766		k3	0.0184	0.00447
	b6	0.000988	0.000489		k4	-0.0874	0.0154
5					k5	3.2762	0.3582
3	c1	-1.2225	0.0521		k6	0.0614	0.00762
2/2	c2	15.7784	1.5609				
				8	m1	-1.1487	0.0118
4	e1	-0.7846	0.0312		m2	-0.0242	0.00941
	e2	-0.2091	0.0369		m3	-0.00005	0.000567
	e3	0.000077	0.000054				
5	f1	-1.1467	0.0916				
	f2	37.3927	7.1629				29
	f3	318.9	125.1				
ENGS	-10						

Sapwood taper analysis: mean error by relative height for the modeling data set

Sapwood taper analysis: Smooth curve of observed and predicted profile

Recommended model

Model 6: Kozak (1988) $Sa/SA_{BH} = X^{C}$ $\begin{cases} X = (1 - \sqrt{Z})/(1 - \sqrt{p}) \\ Z = h/H \\ p = (1.37/H) \\ C = h_{1}Z + h_{2}Z^{2} + h_{3}Ln(Z + 0.001) + h_{4}\sqrt{Z} + h_{5}(D/H) \end{cases}$

 h_1 = -6.0846, h_2 = 3.5706, h_3 = -0.0134, h_4 = 3.3460, h_5 = 0.0257

Best validation results

32

Heartwood-Sapwood taper: 3-D view

CONCLUSION

- A better fitting of the stem and the sapwood taper was obtained with allometric based models;
- Stand density effect on tree shape: NO;
- Stand density effect on tree taper: YES;
- Stand density effect on sapwood taper: YES;
- Stand density effect on sapwood shape : YES.

Acknowledgements

- Ahmed KOUBAA UQAT
- Suzanne BRAIS UQAT

Thanks to ours partners !

Stem taper analysis: mean error by relative height for the validation data set

Residual *versus* **predicted values**

Residual *versus* independant variable (h/H)

Residual *versus* independant variable (D)

Sapwood taper analysis: residual by predicted

Sapwood taper analysis: Residual by independent variable (h/H)

Sapwood taper analysis: Residual by independent variable (D)

Number of rings contained in HW by cambial age

Theoretical corrected model of « duraminization » process

Analysis of « Duraminization » process of jack pine trees in boreal stands