Résumé - CAFD

Climate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forest.

Deepa Pureswaran, Louis De Grandpré, David Paré, Anthony Taylor, Hubert Morin, Martin Barrette, Jacques Régnière, Daniel Kneeshaw.

Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences on the provisioning of goods and services from these forests and on long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. While spruce budworm outbreak centres have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.