Are understorey plant communities affected by the interaction of multiple disturbances?

Sudha Ghimire¹, Nicole Fenton¹, Osvaldo Valeria¹ ¹ Forest Research Institute, University of Quebec in Abitibi Temiscamingue

- ★ Boreal forest supports a wide range of biodiversity
- * Ecosystems are influenced by the complex interaction of multiple disturbances that can occur simultaneously and/or sequentially
- ↑ Effect can become pronounced when they multiply
- The Impacts on vegetation, especially non-vascular plant communities
- * Bryophytes play a crucial role in ecosystem functions, such as carbon sequestration, nutrient cycling, moisture regulation, and soil temperature control
 * Multiple disturbances can profoundly affect their microhabitat conditions, growth, and long-term survival

The diversity and composition of specialist species change non-linearly due to the interaction of disturbances in comparison to generalist species and their effect is synergistic in sites with multiple disturbances.

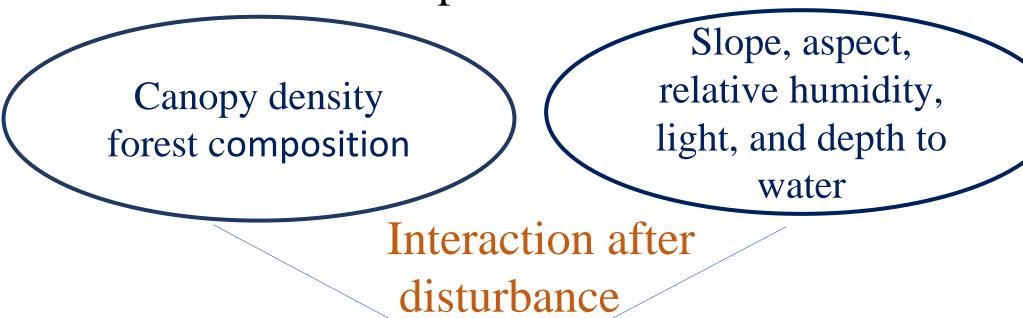


Photo by: Sylvain Jutras

Research Need

Limited research on the impact of multiple disturbances and their interaction on understorey plant communities Lowers the diversity of non-vascular plants

Disturbance Map

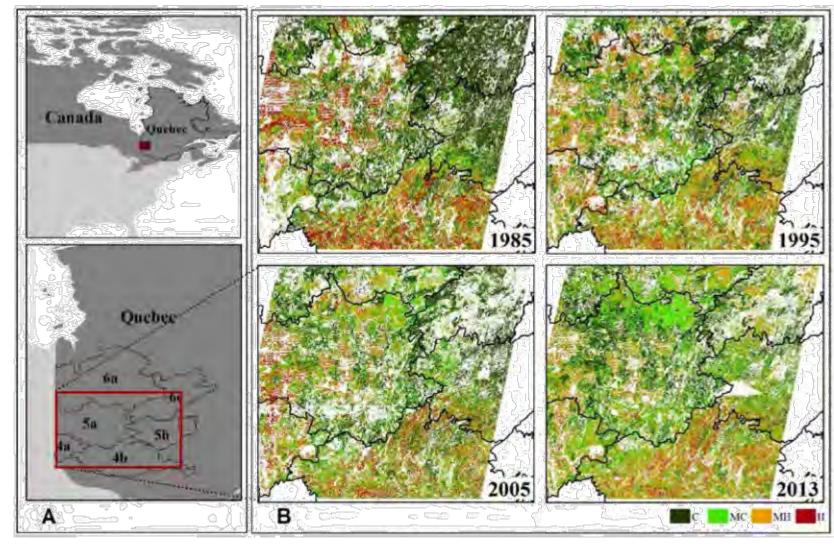


Photo by: Eliana Molina

Field Survey

- The Understorey plant communities will be recorded in each plot using floristic habitat sampling
- Previous studies are only in effect of a single disturbance on bryophytes
- The unavailability of a statistical dataset with high spatial and temporal resolution makes it difficult to study the interaction between disturbances

- How the diversity and composition of understorey plant changes due to disturbances
 To detect the drivers that cause the change in
- To detect the drivers that cause the change in understorey plant communities

Remote Sensing

* We will utilize remote sensing and spatial modeling techniques to track the primary factors driving changes in understorey plant communities

Contribution

 To identify the vulnerable habitats of bryophytes and develop sustainable management practices for their conservation and management

