Emerging trends in the management of Maine's forest: Where are we headed and can it be modeled?

Aaron Weiskittel

Assistant Professor of Forest Biometrics & Modeling

University of Maine, School of Forest Resources

New Trends?

Forests in Maine

Solution Most forested state in the US

¢7.3 million ha - 90% of land area

Forest product industry contributes an annual \$2.2 billion to the state's economy,

 Largest contiguous block of privately owned commercial forest in US (4 million ha)

Introduction

		ALL FORES	STS	PRIVATELY-OWNED FORESTS			
	Con	tribution to GDP All Forests	Percentage of State GDP	Con	tribution to GDP Private	Percentage of State GDP	
TOTALS	\$	115,191,955,000	1.20%	\$	102,126,114,970	1.06%	
Northeast	Ś	6,434,118,000	0.55%	¢	6,071,694,440	0.52%	
Maine	\$	2,270,550,000	4.90%	\$	2,247,844,500	4.85%	
New Hampshire	Ş	520,807,000	0.94%	\$	489,930,510	0.87%	
New York	\$	3,228,979,000	0.31%	\$	2,938,370,890	0.28%	
Vermont	\$	407,782,000	1.65%	\$	395,548 <mark>,</mark> 540	1.60%	
Appalachia	\$	15,188,101,000	1.07%	\$	13,514,477,130	0.96%	
Kentucky	\$	2,620,482,000	1.79%	\$	2,568,072,360	1.75%	
Maryland	\$	848,107,000	0.34%	\$	814,182,720	0.32%	
Ohio	\$	4,521,293,000	1.01%	\$	3,843,099,050	0.86%	
Pennsylvania	\$	6,439,337,000	1.27%	\$	5,537,829,820	1.09%	
West Virginia	\$	758,882,000	1.36%	\$	751,293,180	1.35%	

Forestry still matters in Maine

Current forest composition

Reductions in red spruce and balsam fir; increases in red maple and white pine

Forest Ownership Patterns

Laustsen (2010)

Corporate inventors are the predominant owner of forests now

Forest Harvest Patterns

Laustsen (2010)

Harvest levels remain near historic highs

Forest Harvest Patterns

Biomass is becoming a significant contributor to the total harvest

Biomass & Bioenergy?

- Currently 7 woody biomass power plants in Maine
 - Supply 25% of Maine's energy
 - ✿ 3rd highest production in US
 - Federal subsidize for woody biomass electricity just went into effect
- ③ 3 wood pellet mills
- Significant interest in renovating old paper mills for bioethanol production

Who's harvesting what?

Sader et al. (2005)

Corporate investors are harvesting at elevated rates

Sustainable?

Growth still exceeds mortality and removals, but for how long?

1991-2000 Forest Change

1:40,000 10-15-99 Forest Harvest Legacies: Late 1970s - mid 2000s

152 731

Mid 1990s FPA Category 1 clearcuts

Sader et al. (2005) ight partial harvest

20200-13-1

1970-80s -post-budworm large clearcuts with regeneration now well established

Forest Disturbance Index (1991-2000) - Percentage per Maine Township

Partial Harvests

Predominant and distinctive harvest patterns

Emerging Questions

- Multiple questions about the future of the forest
 - Changing ownership
 - Increasing utilization of biomass
 - Partial harvests
 - Spruce budworm
 - Climate change
 - Habitat availability

Biomass Harvest Guidelines

	Missouri (CWM ≥ 6")	Wisconsin (CWM ≥ 4")	Minnesota (CWM ≥ 6")	Pennsylvania (CWM≥6")	Maine (MFS-FSS)*
Residue	Leave 1/3 of all treetops from roundwood harvest as FWM and 1/3 of the small cut trees	Leave 10% of the FWM of all harvested trees plus all incidental FWM breakage (10- 15%)	Leave 1/3 of the FWM on site (intentionally leave 20% plus 10-15% from breakage)	Leave 15-30% of total harvested biomass as CWM	
Large Logs			Retain 2-5 down logs/acre ≥ 12 inches		Retain 3 down logs/acre ≥ 15 inches and $1 \geq$ 21 inches
Snags	Leave 3-6 snags/acre ≥ 10"	Leave ≥ 3 snags/acre \geq 12", preferably ≥ 18 "		Leave 1-5 snags/acre (any size)	Leave 3 snags/acre \geq 15" and 1 per acre \geq 21"

Bredis (2009)

* Draft

Impacts of biomass harvesting

Location	Percent of total residue	Percent of total harvest
А	44.5	15.8
В	51.3	15.3
С	44.0	13.7
D	57.4	19.7
Е	34.2	9.6
F	43.2	22.4
G	40.9	12.2
Avg.	45.1±2.8	15.5 ± 1.6

Bredis (2009)

Significant amount of biomass is left on site

Impacts of biomass harvesting

Bredis (2009)

Snags and coarse woody debris being generated by harvests, but larger piece sizes are limited

Impacts of partial harvests

- Significant increase of area in trails
 - ♀ 23% on average

Rubus overtops regeneration in trails

 Forested areas have a greater proportion of undesirable hardwoods

Greeno et al. (2010)

Climate change

•Increased temperature and greater precip.

•Balsam fir and red spruce decrease

•Red maple increases

Iverson et al. (2008)

Predicting the future?

- Growth and yield models widely used:
 - Project inventories forward
 - Compare alternative management regimes
 - Simulate alternative futures
 - Test hypotheses
- Forest Vegetation Simulator (FVS) widely used in Maine
 - Individual tree, distanceindependent empirical model
 - Northeast (NE) variant covers broad geographic area

http://www.fs.fed.us/fmsc/fvs/variants/index.shtml

Does FVS work?

- FVS doesn't explicitly model influence of management
 - Thinned stands grow like unthinned ones of the same density

- Based on long-term simulations,
 FVS has been found to be highly biased
 - Underpredicts response to thinning (-173 to -206%)
 - Overpredicts growth in unmanaged stands (64-67%)

<u>Table 1</u>- Percent errors for Forest Vegetation Simulator – Northeast Variant (FVS-NE) growth model in predicting diameter growth of red spruce and balsam fir from regional long-term thinning experiments (Saunders et al. 2007).

Tree species	Commercial Thinning	Precommercial Thinning	No Thinning
Balsam fir	yes	-206%	-13%
	no	-26%	+64%
Red spruce	yes	-173%	+4%
	no	-25%	+66%

Saunders et al. 2007

How do currently available models stack up?

	GNY	FIBER	FVS-NE	SaMARE	STAMEN
Individual tree	Stand-level	Size class	✓	✓	Size class
Forest management	✓	No modifiers	No modifiers	✓, selection cutting	No modifiers
All size classes		>4.5 inches	✓, separate equations	✓, ingrowth and overstory	
Distance- independent	✓	✓	✓	\checkmark	✓
Flexible	Nova Scotia only	Relies on habitat type	Requires site index	Québec only; Requires climate data	New Brunswick only
Model interface	\checkmark	\checkmark	Unstable	✓, SAS & CAPSIS	
State of art		Developed >25 years ago	Old data and poor performance	 ✓, emphasis on northern hardwoods 	Needs constant calibration

What to do?

Empirical models only as good as the data used to construct them

Compile regional growth and yield data

Refit equations

- Allometric (height, crown ratio, crown width, volume)
- Diameter increment
- Height increment
- ✤ Mortality

The Data

Extensive database from Maine and several Canadian provinces compiled

The Data

	DBH (cm)				HT (m)					
Species	N	Mean	StDev	Min	Max	N	Mean	StDev	Min	Max
Balsam fir	958,162	11.1	6.3	2.1	94.0	518,947	8.72	4.26	0.10	28.99
Black spruce	339,278	10.6	5.9	0.5	99.0	224,090	7.81	4.06	0.10	30.47
Red spruce	303,937	15.8	7.8	2.8	118.6	213,586	11.78	4.00	0.60	35.35
Red maple	259,252	14.8	8.1	2.8	82.0	149,397	12.83	3.83	0.10	30.19
Paper birch	161,343	12.9	7.5	0.5	72.0	84,504	11.24	4.84	0.10	30.19
Sugar maple	118,852	16.8	9.7	3.3	106.2	55,153	14.41	3.88	0.55	33.90
White spruce	102,486	16.0	7.9	15.2	68.9	74,184	10.68	4.21	0.60	30.17
Northern white cedar	99,653	16.8	8.4	27.9	99.9	36,999	10.92	2.91	1.22	29.56
Yellow birch	76,809	17.0	10.7	5.6	98.0	37,609	13.03	3.87	1.00	31.49
Eastern hemlock	70,420	17.4	12.0	1.2	88.6	21,932	12.40	4.20	1.49	31.19
American beech	65,334	16.2	8.5	0.4	66.8	27,133	12.34	4.11	1.22	31.51
White pine	48,054	20.8	13.5	13.7	110.7	25,638	13.91	5.39	0.60	39.00
Quaking aspen	26,214	17.1	8.4	5.3	67.6	9,642	14.54	5.41	0.60	33.89
Overall	2,629,794	15.6	8.8	0.4	118.6	1,478,814	11.9	4.2	0.1	39.0

Major species are well represented, even at the extremes

Problems

- Lack of a good measure of site productivity
 - ✤ >95% of data does not have age information
 - Inconsistent climate and soils information

- Lack of site history information
 - Long history of selection harvests

Data from over 65 individual species

Potential Solutions (?)

- With USFS, developed high resolution climatic surfaces for North America
 - Dependent on Lat, Long, and Elevation
 - Past & future climate
 - Easily queried via web

- Using existing algorithms, creating detailed GIS layers
 - ✤ Topographic position
 - Soil drainage

🥹 Custom Data Requests - Mozilla Fire	2fox		- 0 X
<u>File Edit View History Bookmarks</u>	s <u>I</u> ools <u>H</u> elp		
🔇 🔊 C 🗙 🏠 🛽	http://forest.moscowfsl.wsu.edu/climate/customData/	😭 🔹 🚷 🖬 maines forest	٩
Most Visited Smart Bookmarks	S Latest Headlines		
Custom Data Requests	*		*
			-
	Climate Estimates and Plant-Climate Relationships		
Moscow Forestry	Custom Climate Data Requests		
Sciences Laboratory	Custom chinate Data Requests		
	Moscow Home > Climate > Custom Data Requests		
() () () () () () () () () () () () () (Hosew Home / childre / custom buta requests		
	Introduction		
Rocky Mountain	You can select specific data elements and get a zip file that contains the data you request. See Deta	ils on Spatial Extents, Temporal Information and	
Research Station	Data Elements to gain an understanding what is available here. Note that the target user communit	y for this web site is focused on analysts with	
	computer experience and a general knowledge of climate data.		
	NOTE: Climate-FVS ready data should be requested on the Climate-FVS Ready Data page.		
USDA US			
	How it works		
*			
USA.gov	 You prepare a file of locations for which climate predictions are produced. You can upload two is 	types of data:	,
Covernment Case	 Point data has four columns coded as space separated values (commas also work): Point Do not include a beader record, the data must start in the first line. If a BeintiD includes 	ntiD, Long, Lat (decimal degrees), Elevation (meter	s).
	other include a neader record—une data must start in the first line. If a Pointip includes	zin (implies a zin file) or, az (implies a azin file)	
	Example line: "Moscow ID" -117.0 46.73 787.3	.21p (implies a 21p me) of .gz (implies a g21p me).	
	 Asciigrid files must be of elevations in meters and the grid definition in decimal degrees 	please limit your request to about 1 million grid	
	cells). File extensions are normally .txt, but you can compress your file as described for p	point data.	
	Our software detects which kind of data you supply by looking for the header records for Asciig	grid files. If the headers are not found, the file is	
	assumed to be a point data file.		
	You specify an Email address we can use to contact you.		
	You specify the data file to send our site.		
	You specify which spatial extent(s) you want to use.		
	 Our server process the request and builds a zip file of the output data. Our server and server a final with links included that you are use to activity the data ways. 		
	o. Our server serves you an Email with links included that you can use to retrieve the data you re data from the time the Email merchane is cent. Short runs take 5 to 10 mins long runs can take	equested, four are given 24 nours to recover your	
Done	oata nom me ome me emailmessade is sent. Short nins take 5 m to mins joho mins can take		n 6 m 🚳

http://forest.moscowfsl.wsu.edu/climate/customData

Potential Solutions (?)

- Use growth as an indicator of potential productivity
 - Both stand- and tree-level shown to be effective
 - Relate measure to climate and soil factors
 - Map relationship at high resolution

 Initial results show a reasonable relationship with observed site index

Potential Solutions (?)

Avoid fitting species specific equations

Quantify species differences in allometry and growth

- Initial results are promising
 - individual tree diameter growth are accounting for ~70% of the variation of observed growth when a unified equation (all species) is used

Niinemets and Valladares 2006

Climate Change

- Used a non-parametric regression technique and high resolution climate data
 - Explained over 73% in observed site index using 2 variables across 11 states in western US

- Mapped relationship across western US
 - Current climate
 - Future climates

Climate Change

CGCM3_A2_y2030

Significant changes in site index that vary by location

CGCM3_A2_y2060

-105

Climate Change

- Most areas will see a slight increase in site index of 0-5 m
- Significant reductions in some areas of 5 of 15 m
 - Coastal Pacific Northwest
- General agreement between general circulation models
 - Most of the change occurs after 2030
 - Change most drastic under Hadley Center model

Summary

Forestry in Maine faces many complex issues

High uncertainty on the long-term influence of current practices

Growth models will continue to play a big part in shaping management decisions

Preliminary results are promising, but much more work needs to be done

References

- Bredis, J.I., 2009. Logging residue on integrated energy-wood and roundwood whole-tree partially harvested sites in central Maine: Descriptive characteristics and comparisons to biomass harvesting guideline criteria. M.F. thesis. University of Maine, School of Forest Resources, Orono, ME, p. 51.
- Greeno, P.L., Wilson, J.S., Kenefic, L.S., and Weiskittel, A.R. 2010. Influence of partial harvesting intensity and technology on northern forest sustainability and productivity. NESAF Conference Proceedings.
- Iverson, L.R., Prasad, A.M., Schwartz, M.W., 2005. Predicting potential changes in suitable habitat and distribution by 2100 for tree species of the eastern United States. Journal of Agricultural Meteorology 61, 29-37.
- Laustsen, K.M. 2010. Forest inventory, growth, and harvests: Implications for the Maine forest products industry. Presentation to Maine Forest Products Council. January 14, 2010. Bangor, ME
- Sader, S.A., Hoppus, M., Metzler, J., Jin, S., 2005. Perspectives of Maine forest cover change from Landsat imagery and forest inventory analysis (FIA). Journal of Forestry 103, 299-303.

Acknowledgements

- United State Forest Service
 - Northern Research Station
 - Rocky Mountain Research Station

Cooperative Forestry Research Unit

Northeastern States Research Cooperative

Questions/Comments

