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Abstract.—Intensive agriculture, as is typical of corn and soybean production, may be responsible for declines in the abundance 
and diversity of farmland birds. In Quebec, the transition to intensive crops is evidenced by marked increases of corn and soybean 
fields. From 2008 to 2010, we used satellite telemetry to study use of corn (Zea mays) and soybean (Glycine max) fields, other farmlands, 
wetlands, urban areas, and other habitats by 10 female Peregrine Falcons (Falco peregrinus) of the anatum–tundrius complex, a taxon 
of “special concern” in Canada. We monitored females during the nesting season, from hatching of eggs to independence of young, 
but before the young dispersed away from the nest site. Adult females were less likely to use corn and soybean fields than the “other 
farmlands” and “other habitats” categories during the nestling stage and the first month after young fledged. Once young fledged, 
other farmlands and urban areas were more likely to be used than the “other habitats” category when females were hunting in the 
areas that were farthest from the nest. The expansion of corn and soybean fields in the Quebec agricultural landscape has occurred to 
the detriment of other crops and may contribute to the decline in quality of hunting habitat of Peregrine Falcons and other avian top 
predators. Received 14 August 2012, accepted 11 February 2013.
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Utilisation de l’habitat par les femelles de Falco peregrinus dans un paysage agricole

Résumé.—Les cultures intensives, comme les productions de Zea mays et de Glycine max, peuvent être responsables du 
déclin de l’abondance et de la diversité des oiseaux en milieu agricole. Au Québec, l’augmentation marquée des cultures de 
Zea mays et de Glycine max témoigne de la transition vers l’agriculture intensive. De 2008 à 2010, nous avons eu recours à 
la télémétrie satellitaire pour étudier l’utilisation des cultures de Zea mays et de Glycine max, des autres milieux agricoles, 
des milieux humides, des milieux urbains et des autres habitats par 10 femelles de Falco peregrinus appartenant au complexe 
anatum–tundrius, un taxon désigné « préoccupant » au Canada. Nous avons suivi ces femelles en période de nidification, depuis 
l’éclosion jusqu’à l’indépendance des fauconneaux en regard des parents, mais avant leur dispersion. Les femelles avaient moins 
de chances d’utiliser les cultures de Zea mays et de Glycine max que les autres milieux agricoles et que la catégorie des autres 
habitats, pendant que les fauconneaux étaient au nid et le premier mois après leur envol. Après l’envol des fauconneaux, les 
femelles avaient plus de chances d’utiliser les autres milieux agricoles et les milieux urbains que la catégorie des autres habitats, 
lorsqu’elles chassaient dans les endroits les plus éloignés du nid. L’expansion des cultures de Zea mays et de Glycine max dans le 
paysage agricole du Québec, qui se produit au détriment d’autres cultures, peut contribuer au déclin de la qualité des habitats de 
chasse du Faucon pèlerin et d’autres oiseaux de proie.
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The main objective of our study was to quantify and compare 
the use of intensive corn and soybean fields by female peregrines 
in their home range during the nesting season when other hab-
itats were available. Given that prey are less abundant in inten-
sive crops (Best et al. 1995, Stoate et al. 2001), we predicted that 
corn and soybean fields would be utilized to a lesser degree than 
the “other farmlands” and “other habitats” categories. Moreover, 
because peregrines are central-place foragers during the nesting 
season, we also predicted that the probability of patch use would 
decline with increasing distance of the patch from the nest (the 
central place; Rosenberg and McKelvey 1999). Also, because the 
food needs of the brood increase as the young peregrines grow, 
we predicted that female home-range size would increase between 
the nestling period and the first month after fledging.

Methods

Study area.—Our study area is mainly located in southern Quebec 
(Fig. 1) and extends over the St. Lawrence Lowlands, the Appala-
chians, and the Abitibi and James Bay Lowlands (Li and Ducruc 
1999). In the St. Lawrence Lowlands, agriculture covers >50% of the 
territory (Li and Ducruc 1999), with corn and soybeans as the main 
crops (La Financière agricole du Québec [FADQ] 2010a). Agricul-
ture in the Appalachians is practiced in the less hilly terrain and in 
the southern parts of this region, occupying ~15% of the territory (Li 
and Ducruc 1999). The main crops are hay, corn, oats (Avena sativa), 
barley (Hordeum vulgare), and soybeans (FADQ 2010a). In the 
southern part of the Abitibi and James Bay Lowlands, agricultural 
production does not dominate the landscape and consists mainly 
of hay fields (FADQ 2010a). The study area encroaches upon a small 
part of the Champlain Lowlands (U.S. Environmental Protection 
Agency 2011) in New York and Vermont, where hay and corn are 
the main crops (U.S. Department of Agriculture [USDA] 2009a, b).

Capture, manipulation, and telemetry.—From 2008 to 2010, we 
banded and fitted 30-g PTT transmitters on 10 breeding females, us-
ing a backpack harness made of Teflon. We captured birds at the be-
ginning of the nesting season (i.e., end of March to mid-May). They 
were captured either using the dho-gaza method (Bloom et al. 1992) 
with a live or lure owl or using a TR-170 trap (Northwoods Falconry, 
Rainier, Washington) with a live Rock Dove (Columba livia) as lure. 
The transmitters of the 10 females that were monitored during the 
study were programmed to indicate the bird’s location once every 
hour during the species’ activity period (0500 and 1900 hours EST).

Periods sampled during the nesting season.—Telemetry fixes of 
adult birds were classified into two periods: (1) the nestling stage 
and (2) the first month after fledging. The nestling stage was defined 
by the period when the chicks were unable to take flight. The start 
and end of these periods were generally estimated through back cal-
culation (n = 7), by establishing nestling ages during subsequent vis-
its to the nesting site (Canadian Peregrine Foundation 2010). The 
30 days estimated for the period after fledging represented the aver-
age duration of young peregrines’ dependence on their parents, be-
fore they disperse away from the nest site (Weir 1978). 

In nearly half the cases (n = 6), no data were available for the 
ages of young peregrines, and therefore hatching date was based 
on telemetric data (i.e., by taking the first day in a sequence of sev-
eral days, during which no or very few telemetry fixes were trans-
mitted). We considered this method reliable because the females 
are bound to be present at the nest during the first 14 days after 

The anatum–tundrius complex of the Peregrine Falcon (Falco 
peregrinus; hereafter “peregrine”) is ranked as of “special concern” 
in Canada (Committee on the Status of Endangered Wildlife in 
Canada 2007), and the subspecies F. p. anatum is ranked as “vul-
nerable” in Quebec (Gazette officielle du Québec 2003). Despite 
this status, most of the Canadian populations of F. p. anatum 
have been increasing since the end of mass hacks of captive-raised 
young in 1996 (Holroyd and Banasch 2012); where populations 
have been declining, low productivity because of a lack of prey 
species is suspected (Holroyd and Banasch 2012). The peregrine 
can feed on a wide range of bird species and is often recognized 
as a generalist predator (Redpath and Thirgood 1999). However, 
it can also specialize on a more restricted range of prey (White  
et al. 2002, Dawson et al. 2011). Although the species occurs in 
many habitats, it prefers hunting in open environments (Cade 
1982), such as agricultural landscapes, where potential prey are 
abundant (Carter et al. 2003, Sergio et al. 2004).

Since the past century, agricultural landscapes of Europe and 
North America have been progressively transformed with the con-
version of extensive crops into intensive crops (Best et al. 1995, 
Chamberlain et al. 2000). Intensive cropping has been cited as the 
principal reason for massive increases in global agricultural produc-
tion since the mid-20th century (Food and Agriculture Organization 
2007). This method of crop production is implemented to maximize 
yield through the heavy use of pesticides and fertilizers (Jobin et al. 
2003, Le Roux et al. 2008, Meehan et al. 2010) and features deep and 
repetitive tillage (Le Roux et al. 2008). Intensive cropping has often 
been suggested as the main culprit responsible for declines in species 
abundance and diversity (Le Roux et al. 2008) among plants (Billeter 
et al. 2008, Liira et al. 2008), insects (Cherrill 2010), mammals (As-
chwanden et al. 2007), amphibians (Sparling and Fellers 2009), and 
birds (Boatman et al. 2004, Billeter et al. 2008).

Direct effects of pesticides on birds are well known (Newton 
1995). In addition, many pesticides are now believed to have broad 
indirect effects propagated through food webs (Newton 1995), and 
many studies have implicated pesticide and fertilizer use in intensive 
cropping as the cause of declining bird species abundance and diver-
sity in agricultural areas of Europe and North America (e.g., Best et al. 
1995, Stoate et al. 2001). Decreases in plant diversity because of her-
bicide use can reduce host plant numbers, which in turn diminishes 
the abundance of the invertebrates associated with these host plants 
(Campbell and Cooke 1997), which then reduces the availability of 
seeds and invertebrates that serve as the food supply for birds dur-
ing the nesting season (Campbell and Cooke 1997). In Quebec, the 
conversion from extensive to  intensive agriculture has occurred at an 
impressive rate (Jobin et al. 2004). For example, the surface area oc-
cupied by soybeans (Glycine max) increased sixfold between 1991 and 
2006, while that of corn (Zea mays) increased by 38% during the same 
period ( Statistics Canada 2009). According to Best et al. (1995), few 
bird species utilize corn and soybean fields. Moreover, the replace-
ment of extensive crops with intensive crops such as corn and soy-
beans on marginal lands has reduced the number of bird species in 
the American Upper Midwest (Meehan et al. 2010). 

Along with other apex predatory bird species (Sánchez- Zapata 
and Calvo 1999, Cardador and Mañosa 2011), the  peregrine is likely 
to be affected by intensive cropping. A decrease in the availability 
of high-quality prey in areas of intensive cropping, particularly in 
areas of corn and soybean production, could have consequences for 
peregrine hunting success and, ultimately,  reproductive success.
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hatching (Harrison 1984), thereby rendering communication be-
tween transmitters and satellites more difficult. In some cases, 
more than one period with few or no data was identified. To retain 
the period most likely relevant to hatching, the units were com-
pared with dates derived from back calculations. 

Habitat categories.—Available habitats were classified into 
five categories: corn and soybean fields, other farmlands, wet-
lands, urban areas, and other habitats (habitats not belonging 
to any other category). The map layer for the wetlands was ob-
tained from digital maps at the scale of 1:20,000 from the third 
or fourth ecoforest inventory that was conducted by the Prov-
ince of Quebec (Ministère des Ressources naturelles et de la 
Faune 2009, 2011).

Our choice of habitats belonging to wetlands was based on re-
search performed by Lemelin et al. (2010), who studied the selec-
tion of these environments by waterfowl species that are potential 
prey of the peregrine. This resulted in the retention of lakes, rivers, 
ponds, and islands with surface area <20 ha, as well as wetlands 
with tree cover <25%, shrub swamps, and flooded zones. Brooks 
were also added to this category of habitat. To account for the pre-
cision of our telemetry fixes (±18 m), a buffer strip of 30 m was 
applied around these polygons and brooks. We considered that 
wetlands might not have any perches and that peregrines would 
be forced to perch at the perimeter of these to search for prey.

Urban areas, including rural agglomerations, were obtained by 
combining two map sources to produce the most accurate repre-
sentation possible. We combined the agglomeration map layer at a 
scale of 1:50,000 from the National Cartography Database (Govern-
ment of Canada 2004) with the urban polygons that were depicted 
on digital maps of Quebec’s third or fourth ecoforest inventory.

The cartography of the agricultural areas was based mainly on 
the insured-crops database of FADQ, using the following catego-
ries: wheat (Triticum aestivum), canola (Brassica napus), hay, corn, 
barley, oats, soybean, other seeds, market gardening, and small 
fruits (FADQ 2008, 2009, 2010a). Because of crop rotation, we used 
the digital layers corresponding to each year of our study. Because 
each of these layers alone did not represent all (≥90%) of the culti-
vated territory of Quebec (FADQ 2010b), we combined these with 
the agricultural and agroforestry polygon layer derived from the 
third or fourth ecoforest inventory mentioned above. Telemetry 
fixes that were located at distances ≤30 m from an agricultural area 
and outside of a wetland or an urban area were linked with the agri-
cultural category to which they were the closest. This method was 
used because of the possible absence of perches within the agricul-
tural areas, as is the case with wetlands.

We obtained some 30 telemetry fixes in the states of Ver-
mont and New York for one individual in the sample. In this case, 
we used maps provided by the USDA (2009a, b) to delineate the 

Fig. 1. Map of the study area in southern Quebec. Inserts show the location of Peregrine Falcon nest sites and the delimitation of home ranges during 
the first month after fledging.
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habitat that had been used. All geomatic manipulations were 
 performed in ARCGIS, version 10 (ESRI, Redlands, California).

Statistical analyses.—We used 95% fixed-kernel density esti-
mates to demarcate the home ranges of each female per year and 
period. The smoothing factor of the density function, which is a 
critical component of the fixed-kernel method (Worton 1995), was 
estimated using the biased cross-validation (BCV) method. The 
BCV method is more appropriate for large samples (Wartmann  
et al. 2010). To improve the accuracy of home-range estimates and 
to avoid losing useful biological information, we did not eliminate 
spatial and temporal autocorrelation by subsampling the data (De 
Solla et al. 1999). Between study periods, the average surface areas 
of the home ranges were compared using a paired t-test.

We used logistic regression with random effects to estimate 
probabilities of use for each habitat category (Zuur et al. 2009). We 
estimated parameters in the models using the Laplace approxi-
mation to the likelihood (Raudenbush et al. 2000). We treated in-
dividual peregrines and years of the sample as random effects to 
account for the correlations between the observations of the same 
individual in a given year. To obtain the probability function of re-
source selection (Manly et al. 2002), we compared separate sam-
ples of telemetry fixes that were used versus random unused ones. 
This type of case-control sampling provides a biased estimate of 
the probability of use, because model intercepts are different from 
those of conventional models (Keating and Cherry 2004). There-
fore, we presented the probabilities of use as odds ratios, which 
allowed us to make approximately unbiased quantitative analyses 
(Keating and Cherry 2004). The 95% confidence intervals of the 
odds ratios were calculated using the delta method (Oehlert 1992).

We tested our hypotheses regarding the probability of habi-
tat use by comparing eight candidate models (Table 1). The dis-
tance variable was integrated into several candidate models to 
reduce the bias generated by the selection of habitats close to the 
nest (Rosenberg and McKelvey 1999). Euclidean distance was nat-
ural log-transformed and centered to simplify calculations and 
linearize relationships. We used Akaike’s information criterion, 
corrected for small sample size (AICc), to compare the candidate 
models with one another and to identify the most parsimonious 

one (Burnham and Anderson 2002). Models with a ΔAICc ≤ 2 were 
considered to be most plausible (Burnham and Anderson 2002).

Our statistical inference was based on only 10 individu-
als, which constituted the main limitation of our analyses, de-
spite having between 135 and 1,761 telemetry fixes for each 
individual. Our small sample size and the heterogeneity of the 
 landscapes  surrounding the nesting sites that were inhabited by 
these  individuals justified verification of the stability of the model 
that we retained. To do so, we conducted a sensitivity analysis by 
 redoing model selection after having removed, in turn, a different 
individual from the sample, and by recalculating the estimates of 
the  parameters of the top-ranked model.

Home ranges were estimated within R, version 2.13.1 (R 
 Development Core Team 2011), and the packages ADEHABITAT, 
version 1.8.6 (Calenge 2006), and KS, version 1.8.2 (Duong 2011). 
The manipulations regarding the selection of random points and 
the association of habitat attributes with used and random telem-
etry fixes were performed with GEOSPATIAL MODELLING EN-
VIRONMENT, version 0.5.3 Beta (Beyer 2011), which uses R as well 
as the ARCGIS environment. The models were adjusted and com-
pared in R, with the packages LME4, version 0.999375-41 (Bates  
et al. 2011), and AICCMODAVG, version 1.17 (Mazerolle 2011).

Results

Between 2008 and 2010, 10 females provided a total of 8,825 telem-
etry fixes during the nesting season. These data excluded fixes in 
years when some females were not breeding (n = 2). On average, the 
date of hatching was 18 May (27 April–14 June) and the end of the 
nestling stage (or the date of fledging) was 1 July (19 June–16 July). 
The end of the first month after fledging was, on average, 2 August 
(19 July–15 August). After estimating the home-range sizes, only 
the telemetry fixes that were included within those home ranges 
were retained for subsequent analyses. Thus, a total of 8,356 telem-
etry fixes were retained; 4,588 (54.9%) during the nestling stage and 
3,768 (45.1%) during the first month after fledging.

Home ranges and distances from the nest.—Areas of home 
ranges of the adult females that provided data over entire periods 
were quite variable, averaging 83.9 km2 (range: 0.3–392.5 km2; SD = 
± 120.7 km2; n = 12) during the nestling period and 201.9 km2 (range: 
10.0–811.1 km2; SD = ± 261.1 km2; n = 10) during the first month 
after fledging. The average home-range area of females during the 
first month after fledging was significantly larger than during the 
nestling period (t = –4.23, df = 9, P < 0.05). Some 95% of the telem-
etry fixes were located within an 8.7-km radius (maximum distance 
= 25.2 km) of the nest during the nestling period, compared with 
a 16.1-km radius (maximum distance = 33.0 km) during the first 
month after fledging—all were within the defined home ranges.

Habitat use.—Our data suggest that corn and soybean fields 
were underutilized at almost every distance class from the nest lo-
cation (Fig. 2). By contrast, the most heavily used habitat category 
≤5 km from the nest was the “other habitats” category. Most of the 
nest sites were located in or beside this catchall habitat category. 
Breeding females often perched or fed their brood on the nest ledge 
or in its vicinity, and this probably contributed to an overestimate of 
the use of the “other habitats” category inside of 5 km from the nest.

With an Akaike weight (wi) of 1, the global model was clearly the 
most parsimonious among the models that were compared (Table 1). 
Nest distance was included in all top-ranking candidate models 

tabLe 1. Model selection according to Akaike’s information criterion, cor-
rected for small sample size (ΔAICc; wi = Akaike weight), of eight logistic 
regression models with random effects explaining the probability of habitat 
patch use by 10 female Peregrine Falcons in southern Quebec, 2008–2010.

Model a K b ΔAICc wi

Model 7: Period + Habitat + Distance + Period * 
Habitat + Habitat * Distance + Period * Distance c

18 0.00 1

Model 5: Period + Distance + Period * Distance 6 657.31 0
Model 4: Habitat + Distance + Habitat * Distance 12 1,049.23 0
Model 3: Habitat + Distance 8 1,552.65 0
Model 2: Distance 4 1,800.05 0
Model 6: Period + Habitat + Period * Habitat 12 4,771.40 0
Model 1: Habitat 7 5,072.25 0
Model 8: Intercept only (null model) 3 6,967.13 0

a Variables: Period = the nestling period and the first month after fledging; Habitat 
= corn and soybean fields, other farmlands, wetlands, urban areas, other habitats; 
and Distance = log(Distance) – average[log(Distance)].
b Number of parameters including the intercept and the variance.
c Global model.
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Fig. 2. Comparison of mean habitat availability and mean habitat use by 10 female Peregrine Falcons during the nestling period in southern Quebec: 
(A) ≤5 km, (B) >5 to ≤10 km, and (C) >10 km; and during the first month after fledging: (D) ≤5 km, (E) >5 to ≤10 km, and (F) >10 km. Abbreviations: 
CS = corn and soybean fields, OF = other farmlands, WE = wetlands, UA = urban areas, and OH = other habitats.

according to the ΔAICc and had a major effect on the probability of 
use of a habitat patch (Table 1). According to the global model, the 
probability of habitat patch use by a breeding female decreased with 
increasing distance from the nest, even though the effect of distance 
depended on habitat category and period (Table 2). The effect of dis-
tance was stronger in the wetlands and weaker in the corn and soy-
bean fields and “other farmlands” habitat categories (interaction 
between distance and habitat category). Moreover, the effect of dis-
tance on habitat patch selection was greater during the nestling pe-
riod than during the first month after fledging (interaction between 
distance and period). Also, the effect of the nestling period on habitat 
patch selection was stronger in the wetlands than in the “other farm-
lands” category (interaction  between period and habitat category).

Within the range of distances represented in the figures (in-
cluding >98% of the telemetry fixes),  “other farmlands” (odds ra-
tio ± 1.96*SE: 0.41 ± 0.10 to 1.51 ± 0.37) and “urban areas” (0.65 ± 
0.13 to 0.89 ± 0.07) categories were less likely to be used than the 
“other habitats” category within the first 8 km from the nest dur-
ing the nestling period (Fig. 3A, B). Beyond this distance, “urban 
areas” had as great a probability of being used as did the “other 
habitats” category. The “other farmlands” category was more likely 

to be used than the “other habitats” category when located >15 km 
from the nest. During the first month after fledging, the use of 
“other farmlands” (0.61 ± 0.12 to 1.62 ± 0.26) by adult females was 
comparable to the preceding period, with their probability of us-
ing this habitat being greater than the “other habitats” category 
beyond a distance of 10 km from the nest (Fig. 3C). “Urban areas” 
(0.97 ± 0.05 to 1.55 ± 0.39) were more likely to be used than “other 
habitats” except within the first kilometers from the nest, where 
they had as great a probability of being used as did the “other habi-
tats” category (Fig. 3D).

Corn and soybean fields (0.22 ± 0.10 to 0.78 ± 0.38), together 
with wetlands (0.31 ± 0.09 to 1.00 ± 0.01), were less likely to be used 
than “other habitats” at most distances from the nest during the 
nestling period (Fig. 3A, B). During the first month after fledging, 
corn and soybean fields (0.50 ± 0.14 to 1.03 ± 0.21) were less likely 
to be used than “other habitats” up to 9 km from the nest (Fig. 
3C). Furthermore, these crops were not used more than 13 km 
from the nest position. During this period, wetlands (0.70 ± 0.13 to  
1.05 ± 0.04) were less likely to be used than “other habitats” ex-
cept in the first kilometers from the nest, where they had as great a 
probability of being used as “other habitats” (Fig. 3D).
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Fig. 3. Probability of habitat use by 10 female Peregrine Falcons in southern Quebec, compared with the “other habitats” category, on the basis of 
nest distance during the nestling period: (A) corn and soybean fields and other farmlands, and (B) wetlands and urban areas; and during the first month 
after fledging: (C) corn and soybean fields and other farmlands, and (D) wetlands and urban areas. Dotted lines represent 95% confidence intervals, 
and dotted-and-dashed lines the “other habitats” category.

tabLe 2. Summary of the top-ranked model explaining the probability of habitat patch use by 10 female 
Peregrine Falcons in southern Quebec, 2008–2010.

Parameter (β) Estimate SE

95% CI

Lower bound Upper bound

Intercept a 0.93 0.29 0.36 1.50
PeriodNestling –0.92 0.08 –1.07 –0.79
HabitatOther farmlands –1.15 0.10 –1.34 –0.96
HabitatCorn and soybean –1.49 0.14 –1.76 –1.22
HabitatWetlands 0.17 0.09 –0.00 0.34
HabitatUrban areas –0.03 0.12 –0.26 0.21
Distance –0.99 0.03 –1.05 –0.92
HabitatOther farmlands * Distance 0.64 0.04 0.56 0.72
HabitatCorn and soybean * Distance 0.66 0.08 0.51 0.81
HabitatWetlands * Distance –0.21 0.04 –0.29 –0.13
HabitatUrban areas * Distance 0.21 0.06 0.08 0.34
PeriodNestling * Distance –0.16 0.03 –0.23 –0.10
PeriodNestling * HabitatOther farmlands –0.16 0.12 –0.39 0.08
PeriodNestling * HabitatCorn and soybean –0.58 0.15 –0.88 –0.27
PeriodNestling * HabitatWetlands –0.79 0.11 –1.02 –0.57
PeriodNestling * HabitatUrban areas –0.68 0.18 –1.03 –0.33

a Corresponds to the period of the first month after fledging and to the “other habitats” category. 
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Corn and soybean fields (Fig. 4A, B) were less likely to be used 
than “other farmlands” by adult females during the nestling pe-
riod (0.51 ± 0.21 to 0.62 ± 0.14) and during the first month after 
fledging (0.80 ± 0.11 to 0.86 ± 0.12). In each of these periods, the 
odds ratio between corn and soybean fields and “other farmlands” 
was maintained at about the same value, except in proximity to 
the nest (nestling period: 0.5; first month after fledging: 0.8).

The sensitivity analysis showed that model selection was robust 
to exclusion of any individual from the analysis, in that the global 
model was always the top-ranked model, regardless of which indi-
vidual was excluded from the analysis. The effects of most variables 
and their interactions also remained unchanged when individual 
peregrines were removed from the sample, especially in the case of 
agricultural areas. Our top-ranked model contained an interaction 
between nest distance and habitat category. To minimize bias in the 
parameter estimate for this interaction, a habitat category must be 
represented with similar proportions in all nest-distance catego-
ries. For some individuals, this criterion was violated. We verified the 
stability of our model in relation to our conclusions for agricultural 
areas during the period after fledging (home ranges were generally 
larger during this period). Here, we recalculated parameter estimates 
by retaining only those individuals for which the home range exhib-
ited a homogeneous proportion of cover across all distance classes for 
the two agricultural categories (corn and soybean fields and “other 
farmlands”). The effects of the agricultural variables and their inter-
actions with other variables remained unchanged, justifying our re-
tention of the interaction between nest distance and habitat category. 
Conclusions were less robust concerning wetlands and urban areas, 
although the model we presented seems realistic for the majority of 
the individuals in our sample. 

discussion

For most birds of prey, both the shape and size of the home range 
frequently expands toward the end of the nesting period ( Newton 
1979). These changes may be attributed to different distribution of 
prey, a change in food needs, and the fact that adults no longer need 
to defend a territory or tend closely to the brood ( Newton 1979). Our 

results are consistent with the initial predictions  concerning the ef-
fect of the period, because the probability of habitat patch use by adult 
females at a given distance was weaker during the nestling period 
than in the first month after fledging, according to our model.

The marginal value theorem and optimal foraging theory 
are based on the assumption that a foraging animal attempts to 
 maximize energy intake (MacArthur and Pianka 1966,  Charnov 
1976, Nonacs 2001). These theoretical models assume that the 
 distribution of very mobile predators such as birds of prey is 
not random, in that their hunting activity takes place mainly in 
 habitat patches where the largest energy intake can be procured 
(Stephens and Krebs 1986). Energy intake can be influenced by the 
abundance and vulnerability of prey in different habitats (Thir-
good et al. 2003). Viewed in the context of the marginal value 
theorem, our results suggest that period and distance from nest 
had considerable effects that varied with habitat category. These 
results suggest potential differences in the respective quality of 
these habitats with regard to the search for prey.

Many studies highlighted the quality of agricultural 
 landscapes (Sergio et al. 2004) and urban areas (Brambilla et al. 
2006, Gahbauer 2008) as hunting sites for the peregrine because 
of apparent high prey availability. Rock Doves, a major prey item of 
peregrines in continental temperate regions (Cade and Bird 1990, 
White et al. 2002, Carter et al. 2003), along with other columbids 
(White et al. 2002) and European Starlings (Sturnus vulgaris; Carter 
et al. 2003), are common. In temperate continental latitudes, pi-
geons and doves may be not only the most frequently taken prey, but 
also the most important in terms of biomass (White et al. 2002). In 
our study, the “other farmlands” category was more likely to be used 
than the remaining habitat categories, with the exception of “urban 
areas,” at a distance of more than 10–15 km from the nest. After 
fledging, “urban areas” were also more likely to be used than “other 
habitats” by adult females when they traveled such distances. These 
results suggest that the peregrine may find sufficient large prey in 
“other farmlands” and “urban areas” to make it worth the  effort to 
carry them to the nest. The abundance of Rock Doves in both types 
of habitat could explain why they were more likely to be used than 
the remaining habitats at a distance more than 10–15 km from the 

Fig. 4. Probability of use of corn and soybean fields by 10 female Peregrine Falcons in southern Quebec, compared with other farmlands, on the  basis 
of distance from the nest during (A) the nestling period and (B) the first month after fledging. Solid lines represent corn and soybean fields, and dotted- 
and-dashed lines represent the ‘’other farmlands’’ category. Dotted lines represent 95% confidence intervals.
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was relatively low in our study area (U.S. Fish and Wildlife Service 
2008, 2009, 2010a, b). During the first month after fledging, which is 
a period that extends until the beginning of August, American Βlack 
Ducks (Anas rubripes) and Mallards (A. platyrhynchos) became more 
abundant, together with some shorebirds (Bird Studies Canada 2011). 
This increased quantity of available prey could explain a greater use 
of wetlands by peregrines during this period.

In conclusion, the peregrine’s underutilization of corn 
and soybean fields is a possible signal that intensive agriculture 
may affect other top avian predators in agricultural landscapes. 
For example, declines in American Kestrel (Falco sparver-
ius)  populations remain unclear to date, but habitat loss and 
 degradation can be considered important factors (Smallwood et 
al. 2009). Although potential prey of peregrines (Icteridae and 
 Anseriformes) may concentrate foraging activity on waste grain 
in corn and soybean fields in the fall (White et al. 1985, Foster 
et al. 2010, Sherfy et al. 2011) and, thus, provide forage for pere-
grines, our results suggest that expansion of corn and soybean 
fields could lead to decreases in the reproductive success of the 
 peregrine, a species of special concern in Canada.
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