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Abstract
In viewof the economic, social and ecological importance ofCanada’s forest ecosystems, there is a growing
interest in studying the responseof these ecosystems to climate change.Accurate knowledge regarding
growth trajectories is needed for bothpolicymakers and forestmanagers to ensure sustainability of the
forest resource.However, results of previous analyses regarding the sign andmagnitudeof trendshave
oftendiverged.Themainobjective of this paperwas to analyse the current state of scientific knowledgeon
growth andproductivity trends inCanada’s forests andprovide some explanatory elements for contrasting
observations.The threemethods that are commonlyused for assessments of tree growth and forest
productivity (i.e. forest inventory data, tree-ring records, and satellite observations)havedifferent
underlyingphysiological assumptions andoperate ondifferent spatiotemporal scales,which complicates
direct comparisonsof trend values between studies.Withinour systematic reviewof 44peer-reviewed
studies, half identified increasing trends for tree growthor forest productivity,while theotherhalf showed
negative trends. Biases anduncertainties associatedwith the threemethodsmay explain someof the
observeddiscrepancies.Given the complexity of interactions and feedbacksbetween ecosystemprocesses
at different scales, researchers should consider the different approaches as complementary, rather than
contradictory.Here,wepropose the integrationof thesedifferent approaches into a single framework that
capitalizes on their respective advantageswhile limiting associatedbiases.Harmonizationof sampling
protocols and improvementof data processing andanalyseswould allow formore consistent trend
estimations, therebyproviding greater insight into climate-change related trends in forest growth and
productivity. Similarly, amore opendata-sharing culture should speed-upprogress in thisfield of research.

Introduction

Humans have modified their environment substan-
tially, far beyond the natural variability in ecosystem
processes (Zalasiewicz et al 2011), which has led to the
proclamation of a new geological era, the Anthropo-
cene (Crutzen 2002). A recent study located its onset at
around the year 1950 (Waters et al 2016), after which a
strong warming trend in climate was identified
globally and particularly at high latitudes (IPCC 2013).

In Canada, mean annual temperatures have risen on
average by 1.7 °C since 1948, with the strongest
increase along the West Coast (Environment
Canada 2017). These rising temperatures coincide
with an increase of almost 25% in atmospheric CO2

concentrations, emissions of which are attributable to
human activities over the same period (IPCC 2013).
Some concerns regarding climate change relate to its
potential effects on ecosystems, including forests, that
are of major importance for society. Forests cover
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nearly 40% of Canada’s land surface and play a crucial
role in theCanadian economy (Gillis et al 2005). Forest
ecosystems also offer a large number of societally-
relevant functions (Gauthier et al 2015), including the
sequestration of a significant proportion of anthropo-
genic carbon emissions (Arneth et al 2010, Kurz
et al 2013, LeQuéré et al 2018).

Concerns about the future of Canadian wood
resources have led to a growing number of studies
focusing on the assessment and monitoring of forest
ecosystem characteristics. Major satellite observation
programs began in the early 1980s and have provided
information on the effects of environmental change
and human activities on the geographical distribution
of natural resources (Roy et al 2014). Such data allow
mapping and monitoring the Earth’s surface as a
whole, with minimal budgetary considerations and
time constraints that would limit spatial field observa-
tion campaigns to disparate networks of inventory
plots in areas that are easily accessed (Zhang et al 2003,
Sulla-Menashe et al 2016). The quality, accuracy and
availability of remotely sensed data has been improv-
ing constantly over the last few decades. Moreover, a
substantial proportion of these data is now available
free of charge (Czerwinski et al 2014).

In contrast to remote sensing observations, a more
field-based monitoring approach is the network of
sample plots that has been established by federal and
provincial authorities in Canada through national and
provincial forest inventories (Béland et al 1992, Gillis
et al 2005). These plots allow for the estimation of
stand biomass through allometric equations that are
based upon measurements of tree dimensions and the
number of stems per hectare (Lambert et al 2005). Plot
remeasurement provides information on temporal
variation in stand productivity and permits the esti-
mation of future (potential) productivity (Ciais
et al 2008), an important management tool for adapt-
ing silvicultural practices to changing environmental
conditions (Gillis 2011). A second field-based
approach for studying growth trends relies upon den-
drochronology, i.e., the measurement and dating of
annual growth rings that allow linking spatiotemporal
fluctuations in environmental factors to changes in
tree growth rates (e.g., Berner et al 2011, Dietrich
et al 2016, Babst et al 2018).

Many studies have focused on quantifying growth
and productivity trends in Canadian forests using
either one or multiple of these data sources, but
reporting very different results. Rising temperatures
combined with higher atmospheric CO2 concentra-
tions have been assumed to improve forest productiv-
ity by lengthening the growing season (Eastman
et al 2013) and increasing carbon assimilation rates
(Long et al 2004). While several studies had indeed
shown mainly positive trends for Canadian forests (Ju
and Masek 2016, Hember et al 2017), other studies
indicated a decreasing trend in growth and productiv-
ity rates (e.g., Chen et al 2016, Girardin et al 2016a).

Heat stress that is caused by rising temperatures and
an increase in the frequency and intensity of droughts,
among other factors, have been suggested as explana-
tions for these downward trends (Hogg et al 2005,
Zhang et al 2008, Michaelian et al 2011, Girardin
et al 2014). The lack of a clear tendency in growth and
productivity estimates prevents policy makers from
adequately defining annual allowable cuts, and fores-
ters from determining appropriate silvicultural prac-
tices thatmaximize growth rates and forest yields.

Here, we provide an in-depth assessment of meth-
odological aspects that could explain, in part, the con-
tradictory findings of earlier studies. The first section
of this paper focuses on the characteristics of the stu-
died variables and spatiotemporal scales. We examine,
whether the different methods target comparable eco-
physiological processes, and to what extent observa-
tional scales and data resolution allow for robust com-
parisons. We then discuss biases associated with each
method and how they may affect the calculation of
growth and productivity trends. Finally, we propose
the co-integration of the different methods as a means
of improving estimates of growth and productivity
trends across large forest biomes such as the Canadian
forests. We conclude by pointing out the urgent need
to adjust some of our established working methods to
foster advances in this field of research. We also
encourage intensified data sharing through open-
access portals.

Methodology

Data sources anddefinitions
This paper is based upon a systematic review of trends
in Canada’s forest growth and productivity that were
reported in peer-reviewed scientific articles. Articles
were searched through the Google Scholar and ISI
Web of Knowledge search engines using the following
keywords: ‘Canadian forest growth,’ ‘Canadian forest
productivity,’ ‘Canadian forest inventory data,’ ‘Den-
drochronological studies Canada,’ ‘Forest response to
climate change,’ ‘normalized difference vegetation
index (NDVI) trends Canada,’ ‘Productivity trends
Canada,’ ‘Dendrochronology trends Canada,’ ‘Biases
dendrochronology,’ ‘Biases forest inventory data,’
‘Biases vegetation indices,’ ‘Uncertainties remote sen-
sing data,’ ‘Uncertainties productivity calculation,’
‘Uncertainties detrending.’ Citations within the
searched articles were also carefully checked and
incorporated if they were relevant (backward search).
While this work focuses on growth and productivity
trends in Canadian forests, search results from other
geographic areas have been retained for the purposes
of discussion. In particular, these were studies that
mentioned innovative methodological approaches
that have rarely been applied in Canadian studies. The
search did not include studies of productivity simula-
tions that were derived frompredictivemodels.
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Throughout this systematic review, we shall refer
to the terms ‘growth’ and ‘productivity.’Here, we shall
use the term ‘growth’ mainly to refer to secondary
growth, i.e., the increase in tree diameter or basal area
(e.g., Dietrich et al 2016, Girardin et al 2016a). Else-
where, Assman (1970) defined ‘forest productivity’ as
the increase in biomass or volume of wood per unit
area and time. Researchers usually calculate this value
as the difference in woody biomass between two mea-
surement dates (e.g., Ma et al 2012, Hember
et al 2017). In this paper, we shall use the term ‘pro-
ductivity’ to refer to the change in living wood biomass
that occurs within a stand or forested area between
twomeasurement dates.

Different variables at different working
scales

Interconnected but dissimilar physiological
processes
We identified 44 studies that focus on the estimation
of Canadian forest growth and productivity trends.
Most of these studies rely upon remote sensing data,
followed by forest inventory and tree-ring analyses
(table 3, see specific examples in figure 1). Across all of
these studies, Canadian forests experienced no signifi-
cant change in growth, with a typical standardized
growth rate of −0.52% per year with 95% boot-
strapped confidence intervals [−2.27,+0.70] (average
taken from n=51 standardized growth rate samples,

table 3). Half of the studies report positive trends,
whereas the other half shows a decline in growth and
productivity. Observed growth trends ranged from
−24.5% yr−1 to +10% yr−1 (table 3). Some datasets
show similarities, including NDVI from GIMMS 3g
(Pinzon and Tucker 2014), aerial biomass inferred
from provincial forest inventories, and trends in
dendrochronological analyses of Canada’s National
Forest Inventory database (figure 1). During the late-
20th century, the north-westernmost boreal zone
showed negative trends, while the southeastern boreal
zone displayed positive trends (figure 1). Despite this
general tendency, one can see many differences in the
signs and magnitudes of the trends within regions,
depending upon the data source (table 3). Determin-
ing how much of these variable results are due to
geography, versus methodological differences, versus
random processes (errors) is a daunting task, and
necessitates a closer look at the underlying eco-
physiological and ecosystem processes that are cap-
tured by each of thesemethods.

Vegetation indices that are derived from remote
sensing data are broadly used to approximate plant
productivity (Berner et al 2011). The most commonly
used vegetation indices are the NDVI derived from
surface reflectance, and the leaf area index (LAI), esti-
mated from other vegetation indices such as the NDVI
on the basis of statistical relationships with field
measurements. Vegetated areas typically exhibit
NDVI values between 0.1 and 0.7 (Seth et al 1994,

Figure 1. Left: comparisonof spatially explicit trends acrossCanada’s boreal forest assessedby (a) remote sensing (GIMMS3gNDVI,
data fromPinzonandTucker 2014), (b) forest inventory (abovegroundbiomass, data fromMa et al2012), and (c)dendrochronology
(detrended basal area increments, data fromGirardin et al 2016a). The periods coveredby the trend analyses are indicated next to each
map.Right: three examples of time series are shown for easternCanada: (a) averagedNDVIover 50.875°N,74.21°W, (b) aboveground
biomass for 50.96°N,74.01°W; (c)detrended basal area increments aggregated over 48.94°N,74.76°W (see original papers for
computationprocedures). Also shown are linear regressions of values over time (a): 1982–2002 (bluedashed line), (b): 1971–1999
(orange dashed line), (c): 1950–2002 (greendashed line), 1970–2002 (orangedashed line) and 1982–2002 (bluedashed line).
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Wang et al 2005). Similar to spectral reflectance values
(Carlson and Ripley 1997), vegetation indices are the
expression of how much photosynthetic pigment is
present in a given area (Nagai et al 2010, Piao
et al 2014) and refer to ‘greening’ and ‘browning’ as
seasonal trends in foliage area and pigment density.
These indices are assumed to represent the state of
the vegetation, its photosynthesis capacity (Myneni
et al 1997b). In contrast, productivity estimates from
forest inventories (typically quantified as aboveground
biomass increment, ABI) correspond to stand-level
biomass gains and losses between two inventory
periods (Chen et al 2016, Hember et al 2017). These
values inherently consider stand regeneration and
mortality rates, as well as the stand-level increase in
woody biomass of surviving trees (Hember et al 2017).
Finally, tree-ring width (TRW), which is the most
common parameter in dendrochronological studies,
corresponds to the annual radial growth of a tree and
represents the number and size of cells that are pro-
duced during the growing season (Berner et al 2011).
TRW is often standardized (i.e., ‘detrended’) to obtain
a dimensionless index (tree growth increment (TGI);
ring-width index (RWI), a measure of the annual
growth anomaly compared to the mean over a given
time period (D’Arrigo et al 2004), although this step is
increasingly being avoided when tree rings are used in
an ecological context (Babst et al 2018).

Vegetation indices from remote sensing, above-
ground biomass increments from forest inventories,
and TGIs from dendrochronological studies are
reported occasionally to be correlated with one
another (Pouliot et al 2009, Girardin et al 2014, Vice-
nte-Serrano et al 2016), but they represent the out-
come of different physiological processes. While
vegetation indices reflect photosynthetic capacity,
growth-based metrics represent increases in woody
biomass at different scales (stem: ring-widths or stand:
ABI). These different proxies of growth and pro-
ductivity refer to different processes of plant carbon
uptake and use (leaf, stem, roots) and are correlated in
a nonlinear fashion (Tateishi and Ebata 2004). RWIs
refermainly to the increase in radial diameter, i.e., sec-
ondary growth, and are thus not a direct measure of
height growth or stand demographic processes, such
as recruitment or mortality. Furthermore, the carbon
that is sequestered in a given year will not only ensure
the growth of that year, but can additionally sustain
the tree’s needs in the following years through the sto-
rage and remobilization of non-structural carbohy-
drates (Berner et al 2011, Richardson et al 2013).
Consequently, a reduction in the tree’s photosynthetic
capacity or an increased carbon consumption for
baselinemetabolism during a drought year will reduce
the carbon that is available for structural growth in the
following year. This often leads to a 1 year lag between
vegetation indices and radial growth increments (Ber-
ner et al 2011, Beck et al 2013, Seftigen et al 2018) and
to significant autocorrelation in tree-ring time series

(Zhang et al 2017). The correlation between remote
sensing vegetation indices and tree- or plot-scaled
proxies may also depend upon carbon sink strength of
different organs (e.g., roots, shoot, needles or leaves)
(Rieger et al 2017).

On the importance ofworking scales
Spatial scales
Spatial variability in growth and productivity trends is
an important feature of Canadian forests (Girardin
et al 2011, 2016a), and this variability occurs across
latitudinal (Huang et al 2010) and longitudinal (Nishi-
mura and Laroque 2011) gradients. Some authors also
observed the importance of elevation (Parent and
Verbyla 2010) and soil hydraulic regimes (Hember
et al 2017), thereby emphasizing the role of spatially
heterogeneous and temporally non-stationary factors
that occur at different geographical scales (Anyomi
et al 2014). Numerous interactions and feedbacks
across time and space prevent analysts from defining
clear boundaries between these scales (Miller
et al 2004, Soranno et al 2014, Scholes 2017). As noted
by Zhang et al (2003) and McMahon et al (2010), the
different methods of assessing forest growth and
productivity do not always operate at the same spatial
scale.

Remote sensing often operates at regional scales
where some local or stand-specific ecological and
environmental processes are not captured as accu-
rately as in field-based assessments (Goetz et al 2005,
Beck and Goetz 2011, Piao et al 2014). Land cover
maps allow grouping of the woody vegetation into
large forest types (Zhou et al 2003), for which different
productivity trends have been observed (Goetz
et al 2005) that are potentially influenced by natural or
anthropogenic disturbances (Boisvenue and Run-
ning 2006). Negative trends have been reported for
areas that have been recently affected by a disturbance,
whereas strongly positive trends are characteristic of
forest regrowth responses (Hicke et al 2002a, Pouliot
et al 2009, Beck and Goetz 2011, Ju and Masek 2016).
Sulla-Menashe et al 2018 demonstrated that a large
part of positiveNDVI trends from remote sensing data
could be associated with forest recovery after dis-
turbance. Elimination of areas that were affected by a
major disturbance could help improving comparisons
between studies, as well as distinguishing the effects of
climate change from those that are related to dis-
turbances (e.g., Parent and Verbyla 2010, Beck and
Goetz 2011, Sulla-Menashe et al 2016, Girardin
et al 2016a, Hember et al 2017). However, algorithm-
based identification of disturbed areas is error-prone
and caution is warranted when interpreting these data
(Sulla-Menashe et al 2016).

At the stand level, composition and demography
can significantly affect forest productivity (Foster
et al 2014). In addition to differences between indivi-
duals, some authors also have identified species-specific
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sensitivity to environmental stresses (Chen et al 2016,
Wason et al 2017, Teets et al 2018). Such inter-specific
differences are related to physiological thresholds and
anatomical properties, such as root systemmorphology
(Hember et al 2016), andwould lead to different rates of
biomass accumulation and growth trends (McMahon
et al 2010, Girardin et al 2016a). Finally, at the finest
scale of dendrochronological studies, growth trends of
individual trees of the same species may differ even
within the same stand (Buras et al 2016). This is likely
due to demographic and genotypic differences between
individuals or differences in microclimatic conditions,
topography, soil properties and soil drainage (Wilmk-
ing et al 2005, Berner et al 2011, Brienen et al 2012, Gir-
ardin et al 2012,Girardin et al 2014).

Since ecological parameters that influence tree
growth and forest productivity cannot be measured or
controlled accurately, depending upon the spatial scale
(figure 2), comparing trends frommethods that operate
at different scales is challenging. Therefore, it is risky to
extrapolate results thatwere obtained atfine spatial scales
to coarser scales (i.e., upscaling), and vice versa (i.e.,
downscaling) (Scholes 2017). For example, strong posi-
tive trends could be observed at the individual tree level,
while the stand could experience lower or even negative

trends resulting from a lack of regeneration or an
increase in mortality rates (Hogg et al 2005, McMahon
et al 2010, Groenendijk et al 2015). Similarly, an increase
in vegetation cover could result in increasing values of
vegetation indices over time, without a simultaneous
improvement of tree growth rates (Mekonnen et al
2016). In this regard, one should proceed with caution
whenmerging and interpreting results from several data-
sets basedondifferent spatial scales.

Time scales
Growth and productivity trends are also temporally
heterogeneous (Girardin et al 2016b, Hember
et al 2017) (figure 1) and temporal scales differ between
the three observation methods. First, remote sensing
data have been available since the early 1980s (see
table 1). The recording frequency varies from one
week to one month for the most commonly used
datasets (see table 1). Vegetation indices are usually
rescaled to a monthly or annual step (e.g., Zhou
et al 2001). In contrast, data from forest inventories
have been available over the last 50 years on a 5- or 10-
year time step (Hember et al 2017). Environmental
conditions at the time of sampling are known; hence,
each inventory campaign provides a snapshot of the

Figure 2. List of factors that could bemeasured or controlled at the different working scales (individual stem, sample plot/stand,
landscape/global).
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Table 1. Spatial and temporal resolution and period covered by themost frequently used remote sensing datasets.

Dataset Spatial resolution Period covered Temporal resolution Notes

AVHRRGIMMS 1 km/8 km 1978–now Weekly/Bi-monthly These products are derived fromAVHRRdata for which there are several sensor versions: 1 (1978), 2 (1981), 3
(1998) http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html. Data correctionmethods differ between the three

datasets.

AVHRRPAL 8 km 1981–2001 10 day/monthly

AVHRRFASIR 0.08°/0.25°/0.5°/1° 1982–1999 10 day/monthly

Terra-MODIS 250 m/500 m/1 km 2000–now 16 day https://terra.nasa.gov/about/terra-instruments/modis

GIMMSLAI3g 0.08° 1981–2004 Bi-weekly These products are derived from amerging ofMODIS andAVHRRdata http://modis.cn/globalLAI/

GLOBMAP_LAI_DescriptionV1.pdf; http://glcf.umd.edu/data/lai/

GLOBMAPLAI 8 km, 0.08° 1981–now Bi-monthly (1981–2000), 8 day
(2000–2015)

GLASS LAI 1 km, 0.05°/5 km 1981–2012 8 day

LandSat TM/ETM+ 30 m 1982–now 16 day Landsat 4 (1982), 5 (1984), 7 (1999), Landsat 8 since 2013 https://lta.cr.usgs.gov/products_overview/
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sampled stands at a specific point in their life history
(Biondi 2000, Bowman et al 2013). The temporal
resolution of forest inventory data is coarse and does
not allow visualizing inter-annual growth variations,
e.g., following extreme climate events (Hember
et al 2017). Finally, working with ring-width data
allows analysts to assess inter-annual or seasonal
growth variation of boreal species over the tree’s
lifespan (Berner et al 2011, Bowman et al 2013).
However, tree rings in pre-instrumental times were
formed in an unknown and uncontrolled environ-
ment (e.g., during the Little Ice Age, which ended in
1850), differing from current environmental condi-
tions (Cook and Pederson 2011, Bowman et al 2013,
Rieger et al 2017). Ring-width data, as well as remote
sensing data, are available at a very fine timescale,
which could also reduce the ability to detect subtle
changes in growth due to a higher noise level
(Verbesselt et al 2010).

The direction and magnitude of trends may also
depend on time-series length and their start and end
dates (Lloyd and Bunn 2007, Hember et al 2017)
(figure 1). Trends from half century-long series (e.g.,
1950–2002; Girardin et al 2016a) that reflect a multi-
decadal change in growth and productivity rates will
not necessarily agree with those obtained from shorter
time-series (e.g., 1984–2012; Ju and Masek 2016),
which provide information on more recent changes.
This would be particularly true in the context of a sud-
den reversal of trends, such as has been noted in some
Canadian regions between the late 1980s and early
1990s (Wang et al 2011, Girardin et al 2014; see
figure 1).

The spatiotemporal specificities of each observa-
tion method allow scientists to test for a large number
of ecological assumptions. Forest ecologists rely on the
very fine time resolution and wide geographical cover-
age of satellite data to observe continuous patterns of
productivity trends across the landscape, and to for-
mulate hypotheses about the potential link with other
geographically-varying ecological phenomena, such as
changes in the pattern of natural disturbances or in the
phenology of woody species (Goetz et al 2007, Beck
and Goetz 2011). Besides, the spatial unit of forest
inventory data, i.e. the forest stand, makes them better
suited to test more applied and forest industry-orien-
ted hypotheses, for example regarding the best combi-
nation of stand structure and composition tomaintain
the highest yields under a warming climate (Millar
et al 2007). Lastly, the individually-scaled ring-width
data allow to quantify the between-tree heterogeneity
in the growth response to environmental gradients
occurring within a population (Buras et al 2016), and
to link this heterogeneity with tree’s growing condi-
tions or morpho-physiological traits (Rozas and
Olano 2013). However, despite their respective
strengths, each of these three methods has its own
weaknesses for assessing trends in tree growth and for-
est productivity.

Biases anduncertainties

Limitations of remote sensing data
Multiplicity of vegetation indices
The open availability of remote sensing data has led to
a plethora of vegetation indices, each with its own
calculation process. Because different vegetation
indices are based upon different wavelengths, they do
not convey the same information (Czerwinski
et al 2014). Also, because of their remote nature,
vegetation indices can be influenced by several envir-
onmental characteristics. For example, soil character-
istics, such as soil colour, brightness and texture, or
slope, are known to affect NDVI values (Raynolds
et al 2013, Pattison et al 2015), especially in sparsely-
vegetated (Czerwinski et al 2014) and mountainous
terrain (Kerr and Ostrovsky 2003). Finally, NDVI is
prone to saturation when focusing on highly produc-
tive areas (Pattison et al 2015), leading to less precise
estimates of biomass changes in the most productive
forests and possibly obscuring significant trends
(Berner et al 2011). Since compiled NDVI time series
are easily accessible (Ichii et al 2002), other existing
and potentially more accurate indices are rarely used,
such as the enhanced vegetation index (Baret and
Guyot 1991, Czerwinski et al 2014, Jin et al 2016, Sulla-
Menashe et al 2016, Karkauskaite et al 2017).

Spatial resolution
The limited spatial resolution of remote sensing time-
series (table 1) may affect the trend accuracy of
vegetation indices. The vegetation index value that can
be attributed to a given pixel corresponds to the whole
photosynthetic signal of the pixel (Olthof et al 2009,
Berner et al 2011), and the detected trend will mostly
be representative of foliage and productivity variation
of the dominant species (Chen et al 2016), regardless
of whether it is a tree species or not (Berner et al 2011).
The influence of the type and amount of vegetation
can be particularly problematic at high latitudes,
where spurious positive trends that are observed in
sparsely-forested areas (e.g., Guay et al 2014) could be
due to an expansion of the understory vegetation
(Berner et al 2011). Myneni et al (1997b) recom-
mended that the type of vegetation cover be consid-
ered when using NDVI data. A lag between leaf
expansion and photosynthetic capacity of broadleaved
species is often proposed to explain the nonlinear
relationship between vegetation index values and leaf
area values of a given area (Nagai et al 2010). These
resolution-dependent uncertainties may partly
explain the largest proportion of positive trends for
remote sensing-based studies compared to field obser-
vations (68%and 35%, respectively; figure 3(a)).

Data quality
Data quality is crucial for detecting trends that result
from subtle environmental changes, such as climatic
gradients (Pouliot et al 2009, Guay et al 2014).
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Remote sensing data are prone to quality loss through
environmental perturbations, mechanistic limita-
tions, or sensor degradation (see figure 2 in Babst
et al 2010). The main source of environmental
perturbations are snow and cloud cover (Fensholt
and Proud 2012). While the effect of snow cover can
be avoided when focusing on snow-free seasons,
cloud cover is a persistent concern, particularly for
Landsat records of northeastern and western Canada
(Roy et al 2008, Pouliot et al 2009). Cloud contamina-
tion induces artificially low NDVI values and could
be responsible for the negative trends that have been
observed for the Arctic region (Parent and Ver-
byla 2010). Existing algorithms that are used to
remove cloudy pixels automatically (Sulla-Menashe
et al 2016) are suboptimal (Slayback et al 2003).
Removal of cloudy pixels also lowers the number of
observations (Parent and Verbyla 2010, Fraser

et al 2011, Ju and Masek 2016) and, thus, affects the
capacity to detect significant trends (Pattison et al
2015). Uncertainties that are associated with sensor
mechanics and post-recording corrections are
related, among other things, to a lack of calibration,
orbital drift, differences in viewing geometries, and
to the use of different algorithms for atmospheric
corrections (e.g., Roy et al 2008, Chen et al 2014).
Because of these mechanistic limitations and error-
prone correction algorithms, different data sources
and sensors can provide differing NDVI values for
the same geographical area (Sulla-Menashe et al
2016). This lack of robustness constrains the possibi-
lity of cross-studies comparisons (Fensholt et al 2009,
Fensholt and Proud 2012, Raynolds et al 2013, Zhu
et al 2016), as well as merging data from multiple
sensors (Girardin et al 2016b), particularly for the
Arctic region (Raynolds et al 2013).

Figure 3. (a)Percentage of studies reporting positive (black) or negative (grey) growth and productivity trends for Canadian forests, by
observationalmethod (see table 1 for references). Pseudo-replicationwas considered as follows: in the case of two different studies
published by the same author, themost recent studywas selected; Chen and Luo (2015), Zhou et al (2001) and Ichii et al (2002) have
been excluded. In the case of different results from the same study, with the samemethod and the same geographical area, but with
different datasets, the sign of the average trendwas considered (Zhu et al 2016). In the case of different results, with the samemethod,
from the same study, but for different geographical areas, the trend corresponding to thewidest geographical area (Chen et al 2014), or
to the boreal forest (Goetz et al 2005, Bunn andGoetz 2006)was considered. In the case of two different results from the same study
but with differentmethods, the two trendswere retained (Berner et al 2011,Hember et al 2012, Bond-Lamberty et al 2014, Girardin
et al 2014, Boisvenue et al 2016). Also shown is the number of studies taken into account by observationalmethod and trend sign. (b)
Percentage of studies according to their level of uncertainty, by observationalmethod and trend sign. For information about the
attribution of uncertainty levels, see the subsection ‘Uncertainty assessment’.
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Spatial heterogeneity and sampling biases
Effects of a non-random sampling strategy
Soil properties and vegetation types within ecological
units are oftenheterogeneous (LandsDirectorate 1986,
Marshall et al 1999), and an incomplete representation
of such heterogeneous conditions in analyses of
Canadian forest trajectories may induce biases. Since
field sampling is expensive and time-consuming
(Vicente-Serrano et al 2016), forest inventory cam-
paigns tend to target commercial species within intact,
productive and mature forests (Hember et al 2012).
Thus, the least productive (forested peat bogs or xeric
forests) and the least accessible (mainly high-latitude
areas) stands are underrepresented when considering
these field-based observations (Boisvenue et al 2016).
Dendrochronological studies, in contrast, often focus
on the most climate-sensitive trees, i.e., individuals
growing at the edges of their distribution range
(Kaufmann et al 2004, D’Arrigo et al 2014, Charney
et al 2016). This may explain the heterogeneity of
trends from studies that are based upon plot inven-
tories and dendrochronology (table 3,figure 3(a)).

Within a sample plot, the largest dominant/co-
dominant and healthy trees are usually targeted for
tree-ring or stem analyses (Duchesne and Oui-
met 2008, Bowman et al 2013). This non-random
selection of a subpopulation could bias the resulting
growth trends. Sampling only the largest trees in
recently regenerated stands, such as fast-growing trees,
is referred to as ‘big tree selection bias’ in the scientific
literature (Nehrbass-Ahles et al 2014, Groenendijk
et al 2015, Brienen et al 2017). The resulting growth
trends would be artificially high and unrepresentative
of the entire population (Brienen et al 2012). In con-
trast, the selected living trees in the oldest stands could
have experienced the slowest growth, especially for
species with a short life expectancy, including most of
boreal species. This selection of old, slow-growing
individuals (Nehrbass-Ahles et al 2014) would lead to
artificial negative growth trends (Brienen et al 2012).
This is referred to as ‘slow growth survivorship bias’ or
‘productivity survivorship bias’ in the literature (Bow-
man et al 2013). Senescent trees would also artificially
lower growth trends, which is referred to as ‘pre-death
slow growth bias’ (Bowman et al 2013, Groenendijk
et al 2015, Cailleret et al 2017). Also, trees that died
prior to sampling are usually not accounted for when
building chronologies (Swetnam et al 1999). This
results in a loss of reliability and a biomass under-
estimation going back in time (Dye et al 2016), which
is referred in the literature to as the ‘fading record pro-
blem,’ and could lead to apparent increasing growth
rates.

Demographic biases, such as those discussed
above, can lead to biased estimates of tree growth and
forest productivity (Foster et al 2014) potentially
exceeding by 150%–200% the average trend experi-
enced by the whole population (Nehrbass-Ahles
et al 2014). Therefore, there is a need to consider past

demography when studying growth dynamics and
variation in forest biomass (Hember et al 2016), espe-
cially through the sampling of deadwood and snags
(Girardin et al 2011, Gennaretti et al 2014, Groe-
nendijk et al 2015). A combination of den-
drochronological data and simulated past biomass
increments can permit accounting for growth rates of
dead trees (Foster et al 2014). However, this approach
does not account for abrupt and largemortality events,
but instead relies upon the representativeness of the
available dendrochronological data (Foster et al 2014).

Spatiotemporal fluctuation of inventory plot network
Analyses of repeated forest stand measurements have
important advantages over other methods in that they
enable the assessment of effects of stand dynamics,
such as mortality and regeneration, together with
competition for resources on productivity (Wilmking
et al 2004, Foster et al 2014, Hember et al 2017). Since
old stands exhibit lower productivity trends than
mature and young stands (Girardin et al 2012, Chen
et al 2016, Girardin et al 2016b), the use of the age of
the oldest tree or time-since-disturbance as proxies for
stand age are ecological parameters that are necessary
for explaining productivity trends. Yet this variable
can rarely be obtained because either the lifespan of
trees is shorter than the typical stand-replacing
disturbance return interval (and therefore, a mini-
mum age is assigned to the stand), or age is estimated
from core samples that are collected at breast height
(1.3 m) or 1 m height, which can lead to an under-
estimation of tree age of up to 30%with shade-tolerant
species (Marchand and DesRochers 2016). Other
challenges include the effects of natural or anthropo-
genic disturbances that are superimposed upon ecolo-
gical gradients (Girardin et al 2008) and stands that
are, unfortunately, rarely resampled after disturbances
(e.g. Hember et al 2012, Zhang et al 2015, Dietrich
et al 2016, Hember et al 2017). A standard practice is
the translocation or addition of new, non-disturbed
stands to the initial inventory network (Hember
et al 2012, Bowman et al 2013). Hence, post-distur-
bance recovery of productivity cannot be compiled.
The resulting modification in the distribution of site
quality, competition intensity, climatic conditions and
age classes could induce further spurious negative
productivity trends or mask positive trends (Bowman
et al 2013, Hember et al 2017). To avoid uncertainties
that are linked with these spatiotemporal fluctuations
in the plot network, researchers need to consider only
plots that were sampled from the first inventory
campaign to the last one (Duchesne and Ouimet 2008,
Ma et al 2012). This strategy leaves very few plots for
analysis; for example,Ma et al (2012) retained less than
1%of the available plots in their study, in part, because
of this criterion. Nevertheless, an important problem
remains: random mass mortality events that are
induced by natural disturbances are not considered
(Körner 2003, Vanderwel et al 2013), which could
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result in underestimation of mortality rates and over-
estimation of the increase in aboveground biomass
over time (Fisher et al 2008).

Uncertainties resulting fromdata processing
Spatiotemporal data aggregation
When working with large datasets, data rescaling, i.e.,
aggregation of data at a broader scale than the original
scale, is a common practice that represents a trade-off
between the amount of available information and its
relevance to the study’s purpose. Rescaling data at
coarser spatial and temporal scales eases the interpre-
tation and visualization of the results, but it also results
in the loss of strong spatiotemporal variability in
growth and productivity trends. Figure 4 illustrates

how the direction of growth trends could vary when
computed from chronologies successively aggregated
at upper spatial scales. We utilized a subset of stem-
analysis data from Quebec’s Northern Ecoforest
Inventory program, a network of 400 m2 sampling
plots located in unmanaged forests (Létourneau
et al 2008, Girardin et al 2012, Ols et al 2018).
Individual ring-width series of black spruce (Picea
mariana [Mill.] BSP) trees within Quebec’s landscape
unit ‘Lac Robineau’ (50.48–51.60N, 73.75–76.25W;
n=94 trees, up to n=3 trees per plot were sampled)
were detrended following Girardin et al (2016a) to
obtain annually-resolved chronologies of growth coef-
ficients. The detrended chronologieswere then succes-
sively aggregated from the tree level to the plot level,

Figure 4. Illustration of some concerns resulting fromdata aggregation, using a subset of data from theQuebec’sNorthern Ecoforest
Inventory program to infer black spruce 1980–2005 growth trends (in%of change per year) according to theworking scale, from the
individual tree to the landscape unit. Examples are provided for two different ecological districts within the landscape unit ‘Lac
Robineau’ (50.48–51.60N, 73.75–76.25W).
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ecological district and landscape unit by computing
the median values per calendar year, and growth
trends were computed over the period 1980–2005 as
the regression coefficient between median chronolo-
gies and calendar years (as in Girardin et al 2016a). For
illustration purposes, we highlight the very different
results obtained from two distinct ecological districts
regarding the direction of growth trends (figure 4).
Sampling within the ‘Coteaux du lacWikui’ ecological
district suggested a decline in the growth of black
spruce trees regardless of the working scale, consistent
with the negative trend observed for the whole land-
scape unit. By contrast, sampling within the ‘Coteaux
du lac Montmort’ ecological district revealed trends
with reversed signs from one scale to another.
Similarly, rescaling of vegetation indices when dealing
with different spatiotemporal resolutions leads to an
‘ecological fallacy’ (Robinson 1950), i.e., making
inferences about individuals based upon aggregate
data and vice versa, and the broader ‘ecological
inference’ problem (King 2013), viz., the difficulty of
detecting significant trends (Slayback et al 2003, Fen-
sholt et al 2009, Verbesselt et al 2010). Moreover, Chen
and Cihlar (1996) and Chen et al (2014) highlighted
differences in the way that vegetation indices are
aggregated. Indeed, some authors consider either a
maximum (e.g., Nagai et al 2010) or an average value
(e.g., Chen et al 2014) at an annual or monthly
timescale, or over the growing season of the trees (e.g.,
Slayback et al 2003). These differences would diminish
the correlation between remote sensing indices and
field data (Chen and Cihlar 1996), thereby leading to
less reliable and less comparable trends.

Allometric estimation
Allometric estimation is the extrapolation of some
tree-or stand-level parameters that are difficult to
measure directly (e.g., volume), based upon their
strong statistical correlation with tree characteristics
that are easily measured in the field, such as diameter
at breast height. Thus, field measurements extending
from local to national scales (Case and Hall 2008) are
used to determine these relationships and to parame-
terize allometric equations, which are widely used to
estimate stand productivity from forest inventory data
(Lambert et al 2005, Wang 2006). Local equations are
rarely developed because of the costs and logistics of
field sampling. The number of field measurements
remains low even for national equations. For example,
the most widely used national equations that were
devised by Lambert et al (2005) (e.g., Hogg et al 2008,
Chen et al 2016) are based on relatively few field
samples, with some provinces having very few mea-
surements (see figure 2 in Lambert et al 2005). Even if
one could assess the reliability of such parametric
models via fit statistics, some concerns remain when
extrapolating these models to broader scales without
considering the whole set of ecological variables
accounting for the variability in biomass within stands

and regions. Since the heterogeneity of growing
conditions increases with geographical extent, the use
of a wide scale-parameterized equation (e.g., ecologi-
cal region) also implies some uncertainties when
results are to be analysed at a fine scale (Wayson
et al 2015). Furthermore, biomass estimates from
allometric equations rarely consider juvenile trees and
belowground biomass, which leads to less accurate
estimates (Keller et al 2001), particularly for slow-
growing boreal stands (Bond-Lamberty et al 2002).

Estimate accuracy also relies upon the structure of
allometric equations. Because of sampling issues,
some variables that could improve estimation accur-
acy (Lambert et al 2005, Wang 2006), such as tree
height, site quality index, ground-level stem diameter
or stand age, are rarely considered (Bond-Lamberty
et al 2002, Lambert et al 2005, Wang 2006, Case and
Hall 2008). The use of well-documented tree-growth
metrics from forest inventories could be a solution to
the lack of field samples for parameterization. Despite
these various sources of uncertainty, very few studies
have tried to evaluate the accuracy of biomass esti-
mates, because of the scarcity of field measurements
(Wayson et al 2015). According to Bond-Lamberty
et al (2002), the biomass of small or large trees would
be underestimated, while the biomass of medium-
sized trees would be overestimated when using allo-
metric equations. Theoretically, when averaged over
several trees of various sizes, these errors should cancel
one another and lead to acceptable population-level
values. In practice, since these errors are cumulative,
biases from allometric equations could result in large
uncertainties. Moreover, warmer weather conditions
could alter allometric relationships as a result of mod-
ified carbon allocation strategies (Hasibeder
et al 2015), leading to potential under- or over-estima-
tions when inferring a future stand’s aboveground
biomass.

Detrending
Inter-annual variation in TRW is the result of multiple
ecological and environmental processes. Detrending is
a method of standardizing TRW data to remove
unwanted (e.g., geometric) trends that can mask the
desired environmental signal that is preserved in the
measurements. As a standard procedure in dendro-
chronological analyses (Hember et al 2012, Sullivan
et al 2016), detrending eliminates long-term growth
trends that are induced, for example, by a tree’s biology
(tree size and local genotype; Savolainen et al 2007)
and stand demography (age, competition). Numerous
detrending methods have been developed over the
years (Peters et al 2015), with the underlying aim of
improving the retention of environmental signals.
Depending upon the statistical procedure, several
authors have observed differences in the magnitude
and direction of growth trends that are derived from
detrended series (Peters et al 2015, Sullivan et al 2016,
Girardin et al 2016a). The most commonly used
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detrending method (i.e., fitting a curve through the
time series) apparently eliminates part of the long-
term signal and would be responsible for the lack of
significant growth trends in many studies (Peters
et al 2015). Regional curve standardization (RCS) and
its derivatives (Helama et al 2016), which is seen as a
potential solution to reduce detrending biases (Briffa
and Melvin 2011), could induce artificially negative
growth trends, according to Groenendijk et al (2015)
and Brienen et al (2017). Sullivan et al (2016) observed
a trend reversal when applying this method to
chronologies that were averaged by size class. These
negative biases are related to the trend detection step,
which could partly explain the high percentage of
dendrochronological studies reporting negative trends
(70%, figure 3(a)), compared to remote sensing (31%)
and forest inventory-based studies (60%). A recent
detrending method that is based onmixed generalized
additive models (GAMM), which was used by Fajardo
and McIntire (2012), Camarero et al (2015) and
Girardin et al (2016a), considered linear trends such as
growth trends, together with nonlinear trends such as
those linked with tree age and size (Peters et al 2015).
GAMM could reduce detrending biases. Yet uncer-
tainties remain about which part of the signal is exactly
excluded or preserved from raw chronologies (Nehr-
bass-Ahles et al 2014), and which biases from collinear
effects between variables could persist.

Uncertainty assessment
We have described above some of the most frequently
reported biases, which could lead to erroneous conclu-
sions about recent trends in tree growth and forest
productivity. Therefore, one must deal with uncer-
tainties that result from the inherent nature of
remotely sensed data, from the sampling strategy, or
from data processing prior to trend estimation. A
quantification of these uncertainties could allow some
confidence thresholds to be determined, thereby

attributing some weight to the conclusion of the
studies (Wayson et al 2015, Alexander et al 2018).
According to Wayson et al (2015), uncertainties that
are associated with allometric equations are responsi-
ble for up to 30% of the variability in productivity
trends. This value and the qualitative information that
is disseminated by other studies provide a preliminary
assessment of the magnitude of uncertainties that are
associated with the other sources of bias. We deter-
mined the uncertainty rates as follows.

First, remote sensing-specific biases are resolu-
tion-dependent. Uncertainties resulting from the use
of coarse-grain datasets would be of similarmagnitude
to allometric estimations, and would decrease at finer
resolutions. Thanks to correction algorithms, envir-
onmental or mechanistic noise would result in lower
levels of uncertainty, especially when positive trends
are detected (e.g., Sulla-Menashe et al 2016). The
saturation phenomenon that is associated with NDVI
datasets only weakens positive trends without chan-
ging their sign (Pattison et al 2015), but it would lead to
a low level of uncertainty. Since most studies partly
remove disturbed areas (e.g., Parent andVerbyla 2010,
Beck and Goetz 2011), forest regrowth would only
weakly affect productivity trends. In contrast, a non-
random sampling strategy could lead to substantial
uncertainty of magnitude similar to that imposed by
allometric equations (Nehrbass-Ahles et al 2014, Alex-
ander et al 2018). Furthermore, data processing for
trend detectionwould affect growth trends, depending
upon the method that is used. According to Sullivan
et al (2016), the most commonly used detrending
methods would lead to a higher level of uncertainty. In
contrast, more recent methods, such as RCS and
GAMM-based detrending, would be associated with
lower levels of uncertainty (Peters et al 2015). Lastly,
data rescaling should result in uncertainties of inter-
mediate magnitude. A summary of the uncertainty
rates that can be attributed to each source of bias is

Table 2.Apreliminary assessment of uncertainty rates attributed to different biases, depending on the sign of the observed trend. The aimof
this table is to provide some idea of themagnitude for each uncertainty rate. See the subsection ‘Uncertainty assessment’ for information on
the rate attribution.

Bias Data type Uncertainty for positive trend Uncertainty for negative trend

Non-random selection of the stands,

and temporal fluctuation of plot

network

Forest inventory plots 30% 30%

Non-random selection of the trees Tree-ring 30% 30%

Detrending Conservative Tree-ring 20% 30%

RCS/BAC/SCI Tree-ring 10% 15%

GAMM Tree-ring 5% 5%

Use of allometric equations Forest inventory plots 30% 30%

Resampling 20% 20%

Vegetation indices Remote sensing 10% 10%

Spatial resolution 1–8 km Remote sensing 30% 30%

30–250 m Remote sensing 10% 10%

Atmospheric contamination of the

satellite signal and calibration errors

Remote sensing 5% 15%

Fire and insect outbreaks Remote sensing 10% 10%
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presented in table 2. One can see that uncertainty rates
estimated here remained in the same order of magni-
tude whatever the observational method (tables 2 and
3). However, attribution of these different rates,
although partly based on the literature review, remains
highly subjective.

An overall uncertainty rate was computed for each
of the referenced studies, as the sum of uncertainty
rates (i.e., values in table 2) potentially affecting the
results that were reported in the study (table 3, last col-
umn). For example, Dietrich et al (2016) suggested
that results could be biased both by stand- and tree-
level sampling biases (both 30% uncertainty rates),
and by biases from RCS detrending (15% uncertainty
rate for the detection of negative trends), which leads
to the assignment of an overall 75% uncertainty rate.
These uncertainty rates were finally segregated into
four classes, i.e. four levels of uncertainty, as follows: a
‘low’ level of uncertainty was attributed to studies
whose uncertainty rate is below 40%, a ‘moderate’
level of uncertainty to studies whose rate is comprised
between 40% and less than 60%, a ‘high’ level of
uncertainty to studies whose rate is comprised
between 60% and less than 80%, and a ‘very high’ level
of uncertainty in the case of studies whose rate is equal
to or above 80%. Based on this classification, one can
see that a substantial proportion of trends reported in
the literature, whatever their direction or the observa-
tional method they originated from, is subject to a
‘high’ or ‘very high’ level of uncertainty (figure 3(b)).
As a guideline for forest ecologists, the approach we
proposed remains voluntarily illustrative and uncer-
tainty rates will have to be improved before using them
to correct previously assessed trends. Given that some
biases may cancel out or amplify one another, further
field-based quantification is needed.

Co-integration and amultidisciplinary
approach

Make these approaches complementary, not
contradictory
When studying growth and productivity trends of
Canadian forests, one might think that the use of a
given observational method would provide a more
accurate assessment of recent trend directions than
other methods. Yet the response of the forest ecosys-
tem to global change depends upon multiple interac-
tions and feedbacks that occur at different spatial and
temporal scales (Pouliot et al 2009). A disturbance
occurring at a given scale will have repercussions at the
other scales. When studying the forest ecosystem as a
whole, one should simultaneously consider all work-
ing scales, which involves the combination of all
available methods, viz., dendrochronology, forest
inventory data and remote sensing observations (Ber-
ner et al 2011, Girardin et al 2014, Boisvenue et al 2016,
Girardin et al 2016a). Merging data from different

approaches would allow for cross-validation (Nagai
et al 2010, Bowman et al 2013, Czerwinski et al 2014),
facilitating the determination of representative growth
trajectories for the entire Canadian forest (Boisvenue
et al 2016).

Co-integration of different observationalmethods
Different spatiotemporal coverages of the three obser-
vational methods that are discussed throughout
this paper are currently complicating comparisons
between studies. The comparison of the three different
approaches would first benefit from the study of a
common period of time. As discussed in the section
Different variables at different working scales, different
time windows (table 3), as well as a trend reversal from
the early 1980s (Wang et al 2011, Girardin et al 2014;
see also figure 1), reduce the possibility for cross-
validation of the results. Historical growing conditions
could affect current tree growth (Baral et al 2016), but
recent growth rates would be more representative of
current directions of Canadian forests. Thus, a recent
time window, e.g., 1981 to the present, would be an
appropriate choice when studying growth trajectories.
In particular, only the last 30 years of growth are to be
considered when estimating growth trends from ring-
width series of centuries-old trees because of the
potentially compensation effect of older tree-rings
leading to trend estimates that are not reflective of
recently occurring changes in growth rates.

Second, studies focusing specifically on the post-
disturbance recovery of productivity through themea-
surement of seedlings and saplings are scarce (Van
Bogaert et al 2015). To improve our knowledge
regarding current and future growth directions, data
that are available on the growth of young trees from
studies comparing different developmental stages (e.g.
Chen et al 2016) or comparisons of height growth rates
of trees based upon time-since-disturbance (e.g., Fan-
tin and Morin 2002, Gamache and Payette 2004,
Andalo et al 2005, Leroy et al 2016, Marchand and
DesRochers 2016)must be merged into a meta-analy-
sis. Given that no transformation is applied (raw data),
sampling height values from stem-analysis data that
are taken from permanent sample plots are free from
the uncertainties that are associated with den-
drochronological data or with allometric estimates. A
few sources of bias could originate from approxima-
tions of heights of sampling when cutting the radial
sections. Thus, the time interval that is necessary to
reach a given height can be extracted and used as a
proxy for recent changes in primary growth rates,
thereby complementing the information on radial
growth that is provided by RWIs. As an applied case
study, figure 5 provides an example of cross-validation
between two data sources. Figure 5(a) displays height-
growth curves from stem-analysis data of 1878 black
spruce trees fromQuebec’s Northern Ecoforest Inven-
tory program (Létourneau et al 2008). In figure 5(b),
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Table 3. Signs and values of growth and productivity trends from studies the areas of which include all or part of theCanadian territory (non-exhaustive list). (a)Trends that are based on a visual interpretation of themaps provided by the
authors are indicatedwith an asterisk (*). (b)The determination of the last column (‘Uncertainty’) is explained in the subsection ‘Uncertainty assessment’. The value reported here corresponds to the sumof all uncertainty rates assessed to
the specified reference. NA for the growth trend ratiomeans that no quantitative valuewas available in the associated reference.

Observationalmethod

Trend

sign (a)
Standardized rate (%
per year) Geographic area Studied period Dataset origin

Ecological

process Reference Uncertainty (b)

Remote sensing Negative * NA NorthernHemisphere 1982–2008 AVHRRGIMMS+MODIS Productivity Beck and

Goetz (2011)
45

Remote sensing Negative −24.5 Northwest Territories 1982–2008 AVHRRGIMMS Productivity Berner et al (2011) 75

Remote sensing Negative * −4 World 1981–2006 AVHRRGIMMS 8 km Productivity de Jong et al 2011 65

Remote sensing Negative * −1 NorthernHemisphere 1994–2002 GIMMS 1° Productivity Angert et al (2005) 65

Remote sensing Negative * −1 World 1982–2009 GIMMS Productivity Zhu et al (2016) 85

Remote sensing Negative * −1 World 1982–2009 GLOBMAP Productivity Zhu et al (2016) 85

Remote sensing Negative * −0.45 Northwestern America 1982–2011 AVHRRGIMMS 8 km Productivity Chen et al (2014) 85

Remote sensing Negative * −0.3 Canada 1981–2003 AVHRRGIMMS Productivity Goetz et al (2005) 85

Remote sensing Negative * −0.3 Northwestern America 1982–2006 AVHRRGIMMS 8 km Productivity Wang et al (2011) 65

Remote sensing Negative −0.2 Quebec 1981–2011 AVHRRGIMMS3g 9 km Productivity Girardin

et al (2014)
75

Remote sensing Negative * −0.06 NorthernHemisphere 1982–2003 AVHRRGIMMS+MODIS Productivity Bunn and

Goetz (2006)
85

Remote sensing Positive * 0.06 NorthernHemisphere 1982–2003 AVHRRGIMMS+MODIS Productivity Bunn and

Goetz (2006)
75

Remote sensing Positive 0.06 Canada 1984–2011 Landsat TML1T Productivity Sulla-Menashe

et al 2018

35

Remote sensing Positive * 0.2 World 1983–2005 AVHRRGIMMS+MODIS Productivity Zhang et al (2008) 95

Remote sensing Positive * 0.3 Canada 1981–2003 AVHRRGIMMS Productivity Goetz et al (2005) 75

Remote sensing Positive * 0.47 Northwestern America 1982–2011 AVHRRGIMMS 8 km Productivity Chen et al (2014) 75

Remote sensing Positive * 0.56 World 1982–1999 AVHRRGIMMS Productivity Zhou et al (2001) 75

Remote sensing Positive * 0.6 World 1984–2012 Landsat+AVHRRGIMMS8 km Productivity Ju and

Masek (2016)
35

Remote sensing Positive * 0.75 World 1982–1999 GIMMS+Pathfinder PAL Productivity Nemani

et al (2003)
85

Remote sensing Positive 0.92 Saskatchewan 1984–2012 Landsat Productivity Boisvenue

et al (2016)
45

Remote sensing Positive * 0.94 Northwestern America 1982–1998 AVHRRGIMMS Productivity Hicke et al (2002b) 85

Remote sensing Positive 0.97 NorthernHemisphere 1982–1999 AVHRRGIMMS+FASIR
1°+Pathfinder 1°

Productivity Slayback

et al (2003)
75

Remote sensing Positive * 1 NorthernHemisphere 1982–1991 GIMMS 1° Productivity Angert et al (2005) 55

Remote sensing Positive * 1 Canada 1985–2006 AVHRRGIMMS 1 km Productivity Pouliot et al (2009) 75
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Table 3. (Continued.)

Observationalmethod

Trend

sign (a)
Standardized rate (%
per year) Geographic area Studied period Dataset origin

Ecological

process Reference Uncertainty (b)

Remote sensing Positive 1.25 Yukon, northernQuebec 1986–2006 AVHRR1 km+Landsat 30 m Productivity Olthof et al (2009) 35

Remote sensing Positive * 1.4 World 2000–2009 MODIS Productivity Zhao andRun-

ning (2010)
85

Remote sensing Positive * 1.7 NorthernHemisphere 1981–1991 AVHRRGIMMS+Pathfinder Productivity Myneni et al

(1997a)
75

Remote sensing Positive * 2.4 World 1982–2009 GLASS LAI Productivity Zhu et al (2016) 75

Remote sensing Positive * 2.5 World 1982–1990 AVHRRPathfinder Productivity Kawabata

et al (2001)
85

Remote sensing Positive 3.75 Alberta 1982–2011 AVHRRGIMMS Productivity Jiang et al (2016) 75

Remote sensing Positive * 8 NorthernHemisphere 1981–2000 AVHRRGIMMS Productivity Piao et al (2006) 75

Remote sensing Positive * 10 NorthernHemisphere 1982–1999 AVHRRGIMMS Productivity Zhou et al (2003) 75

Remote sensing Positive NA World 1982–1990 Pathfinder AVHRR Productivity Ichii et al (2002) 75

Remote sensing Positive * NA World 1982–2000 AVHRRPathfinder Productivity Tateishi and

Ebata (2004)
55

Forest inventory Negative −20.8 Northwest Territories, Alberta, British

Columbia, Saskatchewan,Manitoba,

Ontario

2000–2005 Permanent sample plots Productivity Hogg et al (2008) 60

Forest inventory Negative −4.78 Alberta, Saskatchewan 1958–2011 Permanent sample plots Productivity Chen and

Luo (2015)
60

Forest inventory Negative −2.61 Alberta, Saskatchewan,Manitoba,

Ontario, Quebec

1963–2008 Permanent sample plots Productivity Ma et al (2012) 60

Forest inventory Negative −1 Alberta, Saskatchewan 1958–2011 Permanent sample plots Productivity Chen et al (2016) 60

Forest inventory Negative −0.64 British Columbia, Alberta, Saskatch-

ewan,Manitoba

1958–2009 Permanent sample plots Growth Zhang et al (2015) 30

Forest inventory Negative −0.4 Manitoba 1999–2012 Permanent sample plots Productivity Bond-Lamberty

et al (2014)
60

Forest inventory Negative −0.38 Ontario 1950–1989 NFBI Productivity Peng et al (2002) 60

Forest inventory Positive 0.35 British Columbia 1959–1998 Permanent sample plots Productivity Hember

et al (2012)
60

Forest inventory Positive 0.55 British Columbia 1959–1998 Permanent sample plots Growth Hember

et al (2012)
30

Forest inventory Positive 1 Canada 1961–2011 Permanent sample plots Productivity Hember

et al (2017)
60

Forest inventory Positive 1.2 Saskatchewan 1984–2012 Permanent sample plots Productivty Boisvenue

et al (2016)
60
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Table 3. (Continued.)

Observationalmethod

Trend

sign (a)
Standardized rate (%
per year) Geographic area Studied period Dataset origin

Ecological

process Reference Uncertainty (b)

Dendrochronology Negative −4 Ontario 1872–1999 Wood cores Growth Dietrich

et al (2016)
75

Dendrochronology Negative −2.2 Northwest Territories 1982–2008 Wood cores Growth Berner et al (2011) 60

Dendrochronology Negative * −1 NorthernHemisphere 1951–2005 Chronologies Growth Tei et al (2017) 90

Dendrochronology Negative −0.9 Quebec 1950–2005 Permanent sample plots Growth Girardin

et al (2012)
90

Dendrochronology Negative −0.1 Canada 1950–2002 Permanent sample plots Growth Girardin et al

(2016a)
65

Dendrochronology Negative −0.086 Quebec 1950–2007 Permanent sample plots Growth Girardin

et al (2014)
90

Dendrochronology Positive 0.55 Saskatchewan,Manitoba 1950–1994 Wood cores Growth Brooks et al (1998) 90

Dendrochronology Positive 0.57 Manitoba 1912–2000 Temporary sample plots Growth Girardin

et al (2011)
70

Dendrochronology Positive 1.4 Manitoba 1999–2012 Wood cores Growth Bond-Lamberty

et al (2014)
90

Dendrochronology Negative NA NorthernHemisphere 1902–2002 Chronologies Growth Lloyd and

Bunn (2007)
90
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the time that was required for a black spruce tree to
grow from 1 to 12 m was superimposed upon detren-
ded mean annual basal area increments (BAIs) that
were based on 200 plot-level chronologies (data from
Girardin et al 2014). The time to grow from 1 to 12 m
was computed as the difference between the age at
which the tree reached the sampling height (calendar
year attributed to the stem-section’s ring of cambial
age 1,minus calendar year attributed to the oldest tree-
ring of the tree) and the age when reaching a height of
1 m. The two different approaches displayed a similar
pattern of growth declines throughout the 20th
century.

Given their broad geographical extent, remote
sensing data must be used first to assess the geo-
graphical variation of productivity trends of forest
ecosystems, as a general overview. Since suboptimal
targeting of forested areas can bias productivity trends,
the use of maps that include not only forest cover, but
also site characteristics (rather than land use or land
cover maps) is advised to locate forested stands accu-
rately and to exclude non-forested regions. These
maps can facilitate the linking of remote sensing-based
trends with ecological parameters, for example, to dif-
ferentiate trends between stands of different ages or
compositions. For an even more accurate comparison
with inventory- and tree-ring-based studies, one must
target only pixels including field-sampled areas (e.g.,
Berner et al 2011, Girardin et al 2014). In a second step,
forest inventory data must be used to target stands of

interest, for example, to study the specific response of
stands to climate change according to their age or den-
sity. Last, dendrochronological and height-growth
data can be used to cross-validate trends at stand- and
individual-levels, and to specify whether the observed
trends are due to changes in stand demography (i.e.,
mortality rate or recruitment efficiency) or to mod-
ifications of individual growth rates.

Need for improvements
To improve comparisons between studies relying on
forest inventory data and to increase the quantity of
potentially usable data for meta-analyses, standardiza-
tion of sampling protocols appears necessary (Peters
et al 2015, Chen et al 2016). This is the particular goal
of establishing Canada’s National Forest Inventory
program, which is a systematic or random sampling
strategy that is applied across Canada’s forests. Mea-
surement of as many environmental variables as
possible that are undertaken through this inventory
will help determine potential drivers of growth
trajectories.

Open datasets through public repositories (e.g.
DRYAD7, PANGEA8) have the potential to accelerate
advances in environmental sciences (Wolkovich
et al 2012), especially in the field of forest ecology
where large datasets are highly valuable for global-

Figure 5.Cross-validation of forest growth trajectories using a combination of two different approaches. (a)Height-growth curves for
Piceamariana trees north of the limit of commercial forests. (b)Time for a black spruce tree to grow from1 to 12 m in height,
superimposed on regional black spruce tree growth index (TGI, a unitless value computed as the average of detrended tree-ring width
measurements) chronology, (data fromGirardin et al 2014).

7
https://datadryad.org.

8
https://pangaea.de/.
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scale studies (Soranno et al 2014). The collaborative
effort that was initiated by the International Tree-Ring
Data Bank9 (NOAA, Boulder, CO, USA) to centralize
and make available all data from dendrochronological
studies (Grissino-Mayer and Fritts 1997) should be
strengthened with data that have been collected from
national and provincial forest inventories, together
with unpublished data contributed by research labora-
tories (Babst et al 2017). Some authors highlight the
lack of a systematic assessment of data quality (Goetz
et al 2005, Gleckler et al 2008, Ju and Masek 2016),
which is necessary to quantify trend accuracy. To this
end, it would be a wise systematic strategy to include
detailed metadata when sharing datasets, especially
information regarding sampling methods and known
biases (Daly 2006). Open data and metadata will also
facilitate the attribution of a rate of uncertainty to the
computed trends, notably through the dissemination
of the size of the sampled population (e.g. number of
pixels effectively accounted for, size of the area for
which a positive versus a negative trend was observed)
of remote sensing-based studies. Because of improved
knowledge about what is already available and what is
still lacking, data sharing could also stimulate data col-
lection worldwide (Wolkovich et al 2012). Making
data sharing a standard requirement for scientific pub-
lication (Whitlock et al 2016) could thus help filling
the gap between studies whose primary aim is to assess
forest growth and productivity from direct observa-
tions and studies more specific to other research fields,
such as ecophysiology or genetics.

The trend detection step is an important source of
uncertainty in dendrochronological studies.Most cur-
rently used detrendingmethods were developedwith a
view to reconstructing past climatic conditions from
inter-annual to multi-centennial variations in growth
rates; they are not necessarily appropriate to quantify
and assess long-term growth trends. More flexible sta-
tistical methods that are capable of retaining both
long- and short-term growth trends would allow ana-
lysts to adapt detrending procedures to these emerging
objectives. Because trees respond individually to
environmental gradients, the trend detection step
should be performed at the individual scale. The chal-
lenge for unbiased detrending is to accurately distin-
guish and remove the proportion of long-term trend
that is induced only by the tree’s biology (age and size),
and to retain the signal that originates from both
environment and climate. Currently, the GAMM-
based approach seems the most appropriate method
because it allows for some control over what trend is
being removed from the raw chronology, given the
possibility for including some environmental vari-
ables. An approach that permits the determination of
an average biologically-induced growth trend at the
individual scale, such as the C-method that was devel-
oped by Biondi and Qeadan (2008) for shade-

intolerant species, also seems promising. Some work
should be done to adapt this method (i.e., the under-
lying mathematical equations) for slow-growing bor-
eal species. Dendroecologists are increasingly
attempting to move away from detrending, for exam-
ple, by using BAI instead of TRW or by combining
TRWdata with inventories (Evans et al 2017). Pending
these improvements, the suggestion of Peters et al
(2015) and Girardin et al (2016a) to test and compare
different detrending methods for cross-validating the
resulting growth trends is meaningful. This compar-
ison should be supplemented by an assessment of the
effects of coring or harvesting height on the accuracy
of the detrending step (Autin et al 2015).

Conclusions
Throughout this systematic review, we have high-
lighted several elements that contribute to the diver-
gences observed in growth and productivity trends of
Canadian forests. By the different working scales and
physiological processes considered, observational
methods utilized when assessing forest trajectories are
suitable to test a broad range of ecological hypotheses,
both from an applied and a more theoretical stand-
point. Concurrently, these differences prevent an
accurate comparison between studies. Trend calcul-
ation is also affected by several biases that are inherent
to these methods, which further contributes to the
observed variation in growth and productivity trends.
Because the biases for over- and underestimation are
comparable across these methods (table 2), we cannot
attribute contrasting results from growth or produc-
tivity trend estimates simply to these scale and
methodological concerns. The inability either to con-
trol or to measure some ecological or disturbance-
related processes when working at a broad geographi-
cal scale is an additional difficulty that impedes the
comparison, cross-validation, and joint use of datasets
frommultiple observationalmethods.

Several improvements would help clarify the cur-
rent and future trajectories of forest communities. We
argue that we must work towards generalizing growth
trends that are inferred from dendrochronological
studies and productivity trends from forest inven-
tories. In proceeding in thismanner, onemust be care-
ful about sampling biases and the degree to which plot
networks are representative of the focal area. Better
sampling strategies (Nehrbass-Ahles et al 2014, Babst
et al 2017), together with integration of remote sensing
(e.g. Jucker et al 2017) or forest inventory data (Evans
et al 2017), could help. A co-integration approach is a
means of emphasizing the respective advantages of
each method, while limiting their respective dis-
advantages. The study of a recent and common period
of time, a better targeting of the data, a focus on
recently regenerated stands, and a hierarchical use of
different types of data would provide a better idea of
changes that have recently occurred in growth and9

https://ncdc.noaa.gov/data-access.
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productivity rates of forest ecosystems. Finally, har-
monized sampling protocols, together with a revision
of some empirical, but out-dated data processing pro-
cedures and a generalization of open datasets would
improve the accuracy of the resulting trends.
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