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Abstract

Selection cutting is a treatment that emulates tree-by-tree replacement for forests

with uneven-age structures. It creates small openings in large areas and often gen-

erates a more homogenous forest structure (fewer large leaving trees and defec-

tive trees) that differs from old-growth forest. In this study, we evaluated whether

this type of harvesting has an impact on genetic diversity of sugar maple (Acer

saccharum Marshall). Genetic diversity among seedlings, saplings, and mature

trees was compared between selection cut and old-growth forest stands in

Qu�ebec, Canada. We found higher observed heterozygosity and a lower inbreed-

ing coefficient in mature trees than in younger regeneration cohorts of both for-

est types. We detected a recent bottleneck in all stands undergoing selection

cutting. Other genetic indices of diversity (allelic richness, observed and expected

heterozygosity, and rare alleles) were similar between forest types. We concluded

that the effect of selection cutting on the genetic diversity of sugar maple was

recent and no evidence of genetic erosion was detectable in Qu�ebec stands after

one harvest. However, the cumulative effect of recurring applications of selection

cutting in bottlenecked stands could lead to fixation of deleterious alleles, and

this highlights the need for adopting better forest management practices.

Introduction

Forest ecosystems are exposed to natural (i.e., fire, wind-

storms, pests, diseases) and human (i.e., urbanization,

logging, agriculture) disturbances. The ongoing effects of

climate change are being superimposed upon these dis-

turbances in boreal (Bergeron et al. 2010), temperate

(Fischer et al. 2013), and tropical (Brodie et al. 2012)

forests. In northeastern North America, long-term log-

ging has led to changes in forest composition and struc-

ture (Boucher et al. 2009). Following logging, subsequent

reductions in tree population size (tree density and forest

cover) may increase genetic drift and bottlenecks and,

ultimately, decrease genetic diversity (Finkeldey and Ziehe

2004). Loss of diversity may decrease the potential for a

population to adapt to global changes (Hamrick 2004).

Decreased genetic diversity through logging has been

observed in white spruce (Picea glauca [Moench] Voss;

Rajora 1999) and eastern white pine (Pinus strobus L.;

Buchert et al. 1997; Rajora et al. 2000). These studies

reported reductions in the mean number of alleles,

low-frequency alleles, and rare alleles, together with the

level of heterozygosity. In contrast, other studies have

shown no negative effects of logging on tree genetic

diversity for white spruce (Fageria and Rajora 2013),

black spruce (Picea mariana [Miller] BSP; Perry and

Bousquet 2001), and black walnut (Juglans nigra L.; Robi-

chaud et al. 2010). These results suggest that high

intrapopulation genetic diversity, greater longevity, and

efficient long-distance pollen dispersal, which are gener-

ally observed in trees, could counterbalance and attenuate

genetic losses following harvesting (Hamrick 2004).

Sugar maple (Acer saccharum Marshall) is a long-lived

deciduous tree that forms uneven-aged stands. In addition

to the syrup that it produces, this species has major eco-

nomic value as saw timber in northeastern North America

(Majcen et al. 1984; Godman et al. 1990). It is insect polli-

nated (bee) and wind pollinated, and it is shade tolerant

(Logan 1965; Gabriel and Garrett 1984). In Canada, its

range extends from southern Ontario and Qu�ebec, in the

temperate deciduous forest, northwards into the boreal

mixed-wood forest (Little 1971; Saucier et al. 2003).

© 2016 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative

Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

777

Evolutionary Applications ISSN 1752-4571

Evolutionary Applications

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Recent forest management practices largely use natural

disturbance dynamics to guide forest management deci-

sions (Gauthier et al. 2009). The natural disturbance

regimes of northeastern hardwoods are characterized by

microgap dynamics (e.g., through the regular death and

felling of single canopy trees or small groups of trees). Since

the early 1990s, single-tree selection cutting, a type of par-

tial cut that is well-adapted to the uneven-age structures of

northeastern hardwood forests, has become the most com-

mon harvesting treatment for sugar maple stands in

Qu�ebec (Majcen 1994). It was implemented to replace the

diameter-cut limit, which is a sylvicultural system that con-

sists of removing only large merchantable timber trees,

while leaving poor-quality trees (Majcen 1994). Selection

cutting is believed to better emulate the small-scale gap dis-

turbance dynamics of sugar maple stands. It consists in the

removal of 25–35% of the volume of trees having a diame-

ter at breast height (d.b.h.) ≥10 cm (MRNFPQ 2003). The

single-tree is selected in different diameter classes, with cut-

ting cycles occurring at regular intervals of 15–25 years to

sustain stand structure and maintain its quality (MRNFPQ

2003). Selection cutting should not be confused with selec-

tive cutting (or selective logging), which is a practice that

targets the removal of the largest or most marketable tim-

ber while, in many cases, leaving poor-quality trees stand-

ing without necessary regard for the future of the stands.

Stands that are harvested using single-tree selection have

a smaller number of large and defective trees than do old-

growth stands (Angers et al. 2005). Fifteen years after an

experimental selection cut in sugar maple stands, the basal

area, radial growth, and development of sugar maple,

American beech (Fagus grandifolia Ehrhart) and yellow

birch (Betula alleghaniensis Britton) saplings were higher

than those within control plots (Majcen et al. 2005). How-

ever, commercially harvested hardwood forests that were

treated with selection cuts in Qu�ebec were 55% less pro-

ductive after 10 years, in terms of growth of usable timber

compared to experimental plots that had been surveyed

(Guillemette et al. 2013). This response is possibly due to

the low initial (preharvest) quality of sugar maple stands or

to higher intensity harvesting of good quality stems (Guil-

lemette et al. 2013).

Rainville (2007) noted that basic knowledge of hardwood

tree species genetic diversity across Canada is lacking. Previ-

ous work on the genetic diversity of sugar maple is scarce

and has focused mainly on the effects of fragmentation

incurred by agriculture and clear-cutting. Results of these

studies are not consistent. For�e et al. (1992b) reported

higher genetic differentiation among fragmented patches for

sugar maples canopy trees than juveniles. For�e et al. (1992b)

concluded that the level of gene flow between forest patches

was higher in this open landscape. Both For�e et al. (1992a)

and Baucom et al. (2005) found no differences between

sugar maple cohorts (juvenile versus adults) within patches.

In comparing the genetic diversity of 1-year-old seedlings

between patches and continuous forest, Young et al.

(1993a) and Young and Merriam (1994) found greater

genetic diversity within the fragmented forest. Eighty years

after one clear-cut, sugar maple seedlings had a lower per-

centage of polymorphic loci and allelic richness estimates

compared to an old-growth forest (Baucom et al. 2005).

Selection cutting is a treatment that emulates tree-by-tree

replacement in forests with uneven-age structures. How-

ever, it creates small openings in large areas of canopy and

often generates forest structures that differ markedly from

old-growth forest. The fact that selection cutting, as the

state-of-the-art sustainable forestry practice, may poten-

tially harm forest genetics has not been taken into consider-

ation. In this study, we evaluated whether selection cutting

has an effect on sugar maple genetic diversity. We studied

this type of harvesting because selection cutting is the most

commonly applied harvesting treatment in the northeast-

ern hardwood forest, and there have been no studies of its

potential impacts on sugar maple genetic diversity. It is

important to address this question in a context where inter-

national forest certification processes (e.g., the Forest Ste-

wardship Council) are promoting sustainable forest

management practices that include the protection of

genetic diversity of forest trees. Using highly polymorphic

microsatellite markers (Graignic et al. 2013), we compared

for the first time the genetic structure of mature and regen-

eration sugar maple cohorts in logged stands after selection

cutting to that of adjacent unlogged stands (old growth).

We hypothesized that: (i) the removal of 30% (by volume)

of mature trees would reduce the level of diversity (mean

number of alleles, rare alleles, and the level of heterozygos-

ity) of the mature sugar maple cohort compared to the old-

growth mature sugar maple cohort; (ii) sugar maple seed-

lings, which had established after logging, would have a

lower level of genetic diversity due to reductions in the

number of potential parent trees (mature trees); and (iii)

selection cutting would influence levels of genetic structure

among cohorts (adults–saplings–seedlings).

Materials and methods

Study area and sampling

The study took place in the continuous portion of the

northern range of sugar maple, that is, southern Qu�ebec,

Canada (Fig. 1). The study area was located between

45°460N and 46°80N, and 75°530W and 74°590W, at eleva-

tions ranging between 305 and 410 m (Table S1). This zone

lies within the sugar maple–yellow birch (A. saccharum–
B. alleghaniensis) and sugar maple–basswood (A. saccha-

rum–Tilia americana L.) bioclimatic domains, where sugar

maple is abundant (Saucier et al. 2003).
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The stands that had been subjected to selection

cutting were harvested once, during winter 1990 (at the

end of 1990 and early 1991). The selection cutting (SC)

stands were part of a commercial harvest that consisted

of the removal of 25–35% of tree basal area every 15–
25 years (MRNFPQ 2003). The old-growth (OG) stands,

which had not been logged, were classified as excep-

tional forest ecosystems (EFE) by the minist�ere des Res-

sources naturelles du Qu�ebec (Qu�ebec Ministry of Natural

Resources; (MRNQ 2013). The logged stands were

paired with adjacent unlogged stands. One pair of sites

(OG1 and SC1) was located in the sugar maple–bass-
wood bioclimatic domain, while the other two were in

the sugar maple–yellow birch bioclimatic domain

(Fig. 1). All six sites, except for OG2, were similar to

those described by Angers et al. (2005), and OG2 and

OG3 are similar to 2-C-D and 2-C-C described by

Graignic et al. (2014). The respective distances between

logged and unlogged sites were 17.3 km (OG1-SC1),

7.8 km (OG2-SC2), and 1.6 km (OG3-SC3) (Table S1).

Tissue samples (usually leaves or bark) from 360 sugar

maple individuals were collected in 2008. Three cohorts

were sampled randomly per site: mature trees (M, ≥10 cm

d.b.h., n = 20–22), saplings (Sa, 1 ≤ d.b.h. <10 cm,

n = 20), and seedlings (S, d.b.h. <1 cm, n = 18–20). Seed-
ling age was determined as described by Graignic et al.

(2014), with seedlings corresponding to seed that had been

produced between 1986 and 2006. Most of the oldest seed-

lings originated from a mast event that had occurred in

1996 (Graignic et al. 2014). This cohort could have been

directly affected by reductions in the number of potential

parent trees in SC. Samples were dried over silica gel and

maintained at room temperature until they were needed

for genetic analyses.
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Figure 1 Map of the study area, which is situated at the northern continuous distributional limits of sugar maple (Acer saccharum) in Qu�ebec, show-

ing the locations of the 6 study sites (circles, old-growth sites; triangles, selection cutting sites), sugar maple–yellow birch (Betula alleghaniensis) bio-

climatic domain (slanted hatching), sugar maple–basswood (Tilia americana) bioclimatic domain (vertical hatching), and boundaries of all bioclimatic

domain limits (thin lines) (Saucier et al. 2003).
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Molecular methods

DNA was extracted using Extract-N-AmpTM Plant PCR Kits

(Sigma-Aldrich, Oakville, ON, Canada). All samples were

genotyped for 18 variable microsatellite loci using PCR and

genotyping protocols as previously reported (Graignic

et al. 2013). The following modifications to the protocol

were applied: (i) five different multiplex PCR sets were

used (see Table S2); (ii) 0.1 lM of each primer; and (iii) 37

cycles in the PCR amplification procedure.

Marker genetic diversity

For each locus, the total number of alleles (AT), mean num-

ber of alleles per locus (A), mean observed (HO) and

expected (HE) heterozygosity, and the inbreeding coefficient

(FIS) were estimated using FSTAT 2.9.3.2 (Goudet 2001).

Departure from Hardy–Weinberg equilibrium (HWE) per

locus in each stand was tested, together with linkage equilib-

rium between all pairs of loci in each stand, were conducted

using exact tests in GENEPOP 4.2.1 (Rousset 2008). Markov

chain parameters for HWE were 10 000 dememorizations,

followed by 500 batches of 5000 iterations per batch. We

corrected for multiple comparisons using sequential Bonfer-

roni adjustment of P-values to a predetermined experiment-

wise error rate of 0.05 (Rice 1989). Null allele frequencies

were estimated using FREENA (10 000 replicates; Chapuis and

Estoup 2007). This program was selected because it uses the

algorithm of Dempster et al. (1977), which provided the

most accurate estimates among the several algorithms that

were tested by Chapuis and Estoup (2007). We performed a

Mantel test (1000 permutations) between pairwise FST val-

ues, with and without correction for null alleles that were

calculated with FREENA. These tests were performed using the

mantel function in the VEGAN library (Oksanen et al. 2011)

within the R statistical environment (version 2.13.1, R

Development Core Team 2011).

Genetic diversity and differentiation between cohorts and

forest types

For each stand, the mean number of alleles per locus (A),

mean allelic richness (AR), mean observed heterozygosity

(HO), mean expected heterozygosity (HE), pairwise FST,

mean pairwise FST, and inbreeding coefficients (FIS) were

estimated using FSTAT. Tests for heterozygote deficiency were

performed using GENEPOP (Markov chain parameters: 10 000

dememorizations, followed by 500 batches of 5000 iterations

per batch; Fisher’s exact tests). Tests were calculated for each

stand using data for pooled individuals (PI), mature trees

(M), saplings (Sa), and seedlings (S), separately. The genetic

analysis was conducted using all the markers and also mark-

ers with < 10 alleles per locus. According to Balloux et al.

(2000), when the population size is small and markers are

highly variable, there are possibilities that these markers may

not capture all alleles that are present in the stand, which

might yield misleading results. Allelic richness was estimated

for each cohort and sampled sites using a rarefaction method

(El Mousadik and Petit 1996).

To compare AR, HO, He, and FIS between forest types

(OG and SC) and between cohorts (M, Sa, and S), we per-

formed a linear mixed-model analysis (LMM, using the lme

function in the NLME library of R; Pinheiro et al. 2011). The

fixed effects were forest type and cohort and their two-way

interactions; microsatellite marker and pair were consid-

ered as random effects. Assumptions of normality and

homoscedasticity were verified graphically. Models were

simplified by stepwise backward elimination of nonsignifi-

cant fixed effects terms to produce the most parsimonious

model. There were few significant values of pairwise FST,
and this index was subsequently excluded from the analysis.

The same indices, (AR, HO, He, and FIS) were also com-

pared between forest types and cohorts using FSTAT (1000

permutations).

Partitioning of molecular variation

The structure of the genetic variation was determined using

the hierarchical analysis of molecular variance (AMOVA) that

is implemented in GENALEX 6.5b3 (Peakall and Smouse

2006). Genetic differentiation among populations was esti-

mated by the ΦPT statistic. We performed separate signifi-

cance tests (9 999 permutations) between pairs (1, 2, and

3), between forest types (OG and SC) within pairs and

within stands, and between pairs and between cohorts (M,

Sa, and S) within pairs and within cohorts for OG and SC.

Allele frequencies

The effect of selection cutting on allele frequencies was

tested using four classes: common (f ≥ 0.75), intermediate

(0.75 > f ≥ 0.25), low (0.25 > f ≥ 0.01), and rare

(f < 0.01). We also added two classes, low (0.25 > f ≥ 0.05)

and rare (f < 0.05), using a level of 0.05, as suggested by

Marshall and Brown (1975). Allele frequencies were esti-

mated using FSTAT. The analyses were performed for each

cohorts (M, Sa, and S) and cohort within forest types.

Bottlenecks

To test for recent reductions in effective population size

following selection cutting, we used BOTTLENECK 1.2.02

(Cornuet and Luikart 1996) for each stand and cohort

within each stand. Evidence of bottlenecks was tested using

heterozygote excess and allele frequency mode-shift tests.

For the test of heterozygote excess, we used three different
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mutation models: infinite allele mutation (IAM), stepwise-

mutation model (SMM), and two-phase mutational model

(TPM). In TPM, we chose 70%, 90%, 95%, and 99%

SMM, and 12% variance of multistep mutations was

assumed (Piry et al. 1999). Significance tests used one-

tailed Wilcoxon signed-rank tests. Population bottlenecks

cause a mode-shift distortion of the typical L-shaped allele

frequency distribution (Luikart and Cornuet 1998). We

also used the graphical method to assess a bottleneck-

induced distortion of allele frequency distributions that

cause alleles at low frequency (<0.025) to become less

abundant than alleles in one or more allele higher fre-

quency classes (e.g., >0.025–0.050) (Luikart et al. 1998).

Results

Genetic variability of microsatellite markers

The total number of alleles per locus ranged from 3 to 28,

while the mean number of alleles per locus ranged from 2.8

to 17.7 (Table S2). Five of the 18 loci (SM22, SM27, SM47,

SM55, and SM56) failed to meet HWE in three populations

(Table S3). These deviations from HWE were due to

heterozygote deficiencies (FIS ≥0.296; Table S2). Four other
markers also showed heterozygote deficiencies (FIS ≥0.246
for SM29, SM51, SM53, and SM60). These loci exhibited

higher frequencies of null alleles (≥0.10) (Table S4). Their

genetic structures (pairwise FST) were similar before and

after correction for the presence of null alleles (r = 0.90,

P = 0.003). All loci were considered independent because

no significant linkage disequilibrium between pairs of loci

within forest types was detected after Bonferroni correc-

tion. All loci (18) were used in further analyses.

Genetic diversity and differentiation between cohorts and

forest types

The mean number of alleles per locus (A) ranged from 9.2

(SC3) to 9.5 (SC1, OG2, SC2, and OG3) for stands and

Table 1. Genetic variability estimates of sugar maple (Acer saccharum) stands in Outaouais, Qu�ebec, for mature trees (M), saplings (Sa), seedlings

(S), and pooled individuals (PI).

Stands Cohorts n A AR† HO HE FIS FST

OG1 M 20 7.1 6.4 0.583 0.692 0.158*** 0.003

Sa 20 6.6 6.0 0.440 0.676 0.348*** 0.000

S 20 7.1 6.4 0.496 0.684 0.274*** 0.004

PI 60 9.4 9.0 0.507 0.686 0.260*** 0.000

SC1 M 20 7.2 6.4 0.583 0.706 0.174*** 0.001

Sa 20 6.9 6.2 0.480 0.697 0.312*** 0.006

S 20 6.9 6.3 0.521 0.690 0.245*** 0.003

PI 60 9.5 9.1 0.529 0.699 0.243*** 0.001

OG2 M 20 6.9 6.3 0.617 0.696 0.114*** 0.001

Sa 20 6.9 6.3 0.520 0.676 0.230*** 0.003

S 20 7.0 6.3 0.516 0.693 0.255*** 0.002

PI 60 9.5 9.0 0.552 0.688 0.198*** �0.001

SC2 M 20 6.5 6.2 0.597 0.698 0.145*** 0.005

Sa 20 6.7 6.1 0.498 0.658 0.242*** 0.003

S 20 7.0 6.4 0.539 0.712 0.243*** 0.007

PI 60 9.5 9.1 0.543 0.694 0.218*** 0.000

OG3 M 22 7.6 6.6 0.629 0.695 0.095* 0.002

Sa 20 6.7 6.1 0.544 0.688 0.209*** 0.005

S 18 6.8 6.3 0.548 0.687 0.202*** 0.008

PI 60 9.5 9.0 0.577 0.693 0.168*** 0.002

SC3 M 20 6.5 5.9 0.553 0.690 0.199*** 0.001

Sa 20 7.4 6.7 0.531 0.698 0.239*** 0.003

S 20 6.8 6.1 0.452 0.683 0.337*** 0.008

PI 60 9.2 8.8 0.511 0.690 0.260*** 0.001

Means 9.4 9.0 0.536 0.692 0.225*** 0.000

All 13.5 13.2 0.537 0.692 0.224***

n, number of individuals; A, mean number of alleles per locus; AR, mean allelic richness; HO, mean observed heterozygosity; HE, mean expected

heterozygosity; FIS, inbreeding coefficient; FST, mean pairwise FST; Means were determined using PI. All individuals were included in tests for heterozy-

gote deficiency: ***P ≤ 0.001; *0.005 < P ≤ 0.010.

†Allelic richness was estimated with n = 18 for each cohort (M, Sa, and S) and n = 60 for PI. Populations were old-growth (OG) forest or were sub-

jected to a single selection cutting (SC) at the end of 1990–beginning of 1991.
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from 6.5 (M in SC2 and M in SC3) to 7.6 (M in OG3) for

cohorts (Table 1). No significant difference was detected

between cohorts and forest types in terms of allelic richness

(AR) and expected heterozygosity (HE), using both LMM

(in R) and FSTAT (Tables S5 and S6).

Observed heterozygosity (HO) and the inbreeding coeffi-

cient (FIS) ranged from 0.440 (Sa in OG1) to 0.629 (M in

OG3) and from 0.095 (M in OG3) to 0.348 (Sa in OG1),

respectively (Table 1). All cohorts of all populations had a

significant heterozygote deficit (P-values < 0.0054), sug-

gesting a departure from random mating in both forest

types (Table 1). We found a significant difference between

cohorts for both forest types with higher mean HO and

lower mean FIS for mature trees (HO = 0.594; FIS = 0.144)

compared to saplings (HO = 0.505; FIS = 0.269) and seed-

lings (HO = 0.512; FIS = 0.259) (Table S6, Fig. 2). Similar

results were obtained using FSTAT (Table S5).

Means of FST between stands were very low

(�0.001�0.002; Table 1). Only 3 pairwise FST were signifi-

cant (OG3-SC1, OG3-SC3, and SC1-SC3), but their respec-

tive values were very low (0.004, 0.004, and 0.002;

Table S7).

Similar results were obtained when only the less variable

markers (≤10 alleles/locus) were included in the analysis

(Tables S5–S8, Figure S1). However, as more significant

pairwise FST values were detected using all markers

(Table S7), subsequent analyses were performed with all

markers included.

Partitioning of molecular variation

AMOVA revealed that most of the variation (99–100%,

P = 0.015–0.176; Table 2) was attributable to genetic varia-

tion within groups (stands or cohorts). A slight effect of

cohorts (1%, P = 0.034; Table 2) was detected in the SC

stands.

Allele frequencies

No difference for allele frequencies was detected between

selection cutting versus unlogged stands and among

cohorts (PI, M, Sa, and S) (Tables 3 and S9).

Bottlenecks

Recent bottlenecks were detected in the three SC stands,

while none were apparent in the OG stands using IAM

(Table 4). In SC stands, recent bottlenecks were detected in

the mature cohorts (Table S10). Yet, no bottleneck was

detected in any stand using SMM, TMM, and mode-shift

models (Tables 4 and S10). The graphical method revealed

an allelic pattern that was typical of a recent bottleneck in

mature sugar maple cohorts of the three SC stands, with

fewer alleles detected in the low-frequency class (<0.025)
than in intermediate frequency classes (e.g., >0.025–0.050)
(Figure S2). Conversely, nonbottlenecked OG stands had

an allele frequency distribution with a mode in the low-fre-

quency class (Figs 3 and S3).

Discussion

Sugar maple genetic diversity

We observed a high level of genetic diversity in sugar

maple. Previous studies using allozymes have also shown

high levels of genetic diversity in this species (Table 5;

A = 2.3, range: 1.10–5.00; HE = 0.131, range: 0.015–0.275),
which is typical of Acer species and other tree species in

northeastern North America (Table 5). Similar levels of

diversity were reported for Norway maple (Acer platanoides

L.), bigleaf maple (A. macrophyllum Pursh), American

chestnut (Castanea dentata [Marsh.] Borkh.), and red oak

(Quercus rubra L.), while lower levels have been observed

in sycamore maple (A. pseudoplatanus L.) (Table 5). We

found slightly higher values for A and AR than have been

previously reported using the same 18 microsatellites

(Table 5; Graignic 2014), which was likely because the

number of individuals that were sampled per site was

higher here (n = 60 vs n = 40). Diversity was found princi-

pally within stands in both studies (Table 2 and Graignic

2014). Values for A, AR, and HE were higher than or similar

to those reported for other Acer species and many other

tree species in northeastern North America (Table 5).

We observed a positive and significant inbreeding coeffi-

cient (FIS = 0.225, range: 0.168–0.260). The presence of

heterozygote deficiency is common in trees and has been

reported for Acer species and trembling aspen (Populus

tremuloides Michaux) using microsatellite markers

(Table 5). Heterozygote deficiency is often associated with

inbreeding (high levels of consanguineous mating) or is

due to a Wahlund effect (mixing of differentiated gene
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Figure 2 Predicted means (95% confidence intervals) of HO (A) and FIS
(B) for cohorts (M: mature sugar maples, Sa: sugar maple saplings, and

S: sugar maple seedlings). HO, mean observed heterozygosity; FIS,

inbreeding coefficient. Means with the same letter do not differ at

a = 0.05, but differ (with an asterisk) at a = 0.10.
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Table 2. Results of analysis of molecular variance (AMOVA) showing the partitioning of genetic variance among pairs, forest types, and cohorts.

Source of variation df Sums- of-squares Variance components Percentage of variance Phi (Φ) statistics P-values

Among pairs 2 36.397 0.000 0 0.000 0.620

Between forest types within pairs 3 57.125 0.042 0 0.003 0.070

Within stands 354 5858.567 16.550 100 0.002 0.062

Total 359 5952.089 16.591 100

OG

Among pairs 2 34.050 0.000 0 0.000 0.476

Between cohorts within pairs 6 101.998 0.047 0 0.003 0.205

Within cohorts 171 2746.652 16.062 100 0.003 0.176

Total 179 2882.700 16.110 100

SC

Among pairs 2 39.261 0.006 0 0.000 0.416

Between cohorts within pairs 6 115.517 0.116 1 0.007 0.034

Within cohorts 171 2894.400 16.926 99 0.007 0.015

Total 179 3049.178 17.049 100

df, degrees of freedom. Significant values at a = 0.05 are in bold type and at a = 0.10 in italics.

Table 3. Number of alleles per classes of frequency, per cohort of the populations, and grouping populations by forest types.

Forest types Cohorts AT C I L0.01 R0.01 L0.05 R0.05

OG M 179 0 (0%) 22 (12%) 116 (65%) 41 (23%) 55 (31%) 102 (57%)

Sa 165 1 (1%) 21 (13%) 103 (62%) 40 (24%) 57 (35%) 86 (52%)

S 174 1 (1%) 20 (11%) 121 (70%) 32 (18%) 53 (30%) 100 (57%)

PI 217 0 (0%) 21 (10%) 128 (59%) 68 (31%) 53 (24%) 143 (66%)

SC M 167 0 (0%) 24 (14%) 110 (66%) 33 (20%) 53 (32%) 90 (54%)

Sa 171 1 (1%) 18 (11%) 116 (68%) 36 (21%) 60 (35%) 92 (54%)

S 175 0 (0%) 20 (11%) 118 (67%) 37 (21%) 57 (33%) 98 (56%)

PI 215 1 (0%) 18 (8%) 127 (59%) 69 (32%) 61 (28%) 135 (63%)

All M 202 0 (0%) 21 (10%) 126 (62%) 55 (27%) 56 (28%) 125 (62%)

Sa 198 1 (1%) 20 (10%) 121 (61%) 56 (28%) 55 (28%) 122 (62%)

S 207 0 (0%) 21 (10%) 125 (60%) 61 (29%) 52 (25%) 134 (65%)

PI 243 0 (0%) 19 (8%) 57 (23%) 167 (69%) 129 (53%) 95 (39%)

AT, total number of alleles; C, common f ≥ 0.75; I, intermediate 0.75 > f ≥ 0.25; L0.01, low 0.25 > f ≥ 0.01; R0.01, rare f < 0.01; L0.05, low

0.25 > f ≥ 0.05; R0.05, rare f < 0.05; M, mature sugar maples; Sa, sugar maple saplings; S, sugar maple seedlings; PI, pooled individuals.

Table 4. Bottlenecks results based on heterozygosity excess and mode shift.

Stands

Heterozygosity excess

Mode shiftIAM

TMM

SMM70% 90% 95% 99%

OG1 0.08368 0.97003 0.99961 0.99994 1.00000 1.00000 Normal

SC1 0.04488 0.98075 0.99671 0.99883 0.99968 0.99974 Normal

OG2 0.06487 0.98658 0.99968 0.99992 0.99999 0.99999 Normal

SC2 0.04071 0.99552 0.99983 0.99995 0.99995 0.99997 Normal

OG3 0.05935 0.97842 0.99480 0.99832 0.99903 0.99961 Normal

SC3 0.00140 0.99800 0.99995 0.99999 1.00000 1.00000 Normal

Significant values (a = 0.05) are in bold type.
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pools). However, sugar maple is recognized for its low self-

compatibility, which is related to dichogamy (Gabriel

1968), together with its frequent postfertilization ovule

abortion following self-pollination (Gabriel and Garrett

1967). In the present study, sugar maple stands were local-

ized within a small area relative to the species range and FIS
values can vary widely among populations (Table 5 and

Graignic 2014). Significant variation in FIS (heterozygote

excess to deficiency) has been reported for trembling aspen

and Korean maple (A. takesimense Nakai), across their nat-

ural geographic ranges (Table 5; Namroud et al. 2005; Cal-

lahan et al. 2013; Takayama et al. 2013). Thus, our FIS
values likely reflected the level of genetic diversity that we

observed for sugar maple in our study area.

Cohort differences

Lower observed heterozygosity (HO) and higher FIS was

observed in the younger cohorts (Sa, S) compared to

mature sugar maple trees (Fig. 2). The level of heterozygos-

ity increased with age (here, in trees with d.b.h. ≥10 cm) in

the SC and OG stands, a result that is similar to other stud-

ies that have compared cohorts of different ages. This pat-

tern has been reported in various coniferous species (Bush

and Smouse 1992; Nijensohn et al. 2005), in dragon spruce

(Picea asperata Masters; Wang et al. 2010), and in sugar

maple (Ballal 1994). However, this pattern is not always

observed in sugar maple, because other studies found no

differences among cohorts (For�e et al. 1992a; Graignic

2014). One explanation for the presence of a higher level of

heterozygosity in mature trees is selection against homozy-

gotes that occurred during the self-thinning process. This

may be explained by higher fitness of heterozygote individ-

uals or the reduced survival of offspring of related individ-

uals (Charlesworth and Willis 2009). Sugar maple typically

forms uneven-aged stands and the mortality rate at the

seedling stage is very high, particularly for younger seed-

lings (Graignic et al. 2014). In theory, we would expect a

decrease in the low-frequency allele class with age because

during selection, rare deleterious alleles would be elimi-

nated (Charlesworth and Willis 2009). In fact, however, the

percentage of rare alleles was similar among mature sugar

maple, saplings, and seedlings (Table 3).

Another possible explanation is that mature sugar maple

trees originated from overlapping generations, given that

sugar maple can live from 300 to 400 years (Godman et al.

1990). The d.b.h. of mature sugar maple trees that were

sampled ranged between 10 and 82 cm, which corresponds

to ages between 35 and 285 years (Majcen et al. 1984;

Graignic et al. 2014). These generations could have been

influenced by different random selection processes, both at

their establishment and throughout their life spans. In con-

trast, the seedling populations originated from four seed

masts, mostly from a mast event that occurred in 1996

(Graignic et al. 2014). The same selection processes have

not visibly influenced those very few generations of seed-

lings, given the short period of influence (around 12 years)

compared to mature sugar maple trees (285 years).

Contrary to our expectations, the level of genetic struc-

ture between cohorts was similar among forest types. At

the stand level, no significant impacts on allelic richness

and genetic diversity (HE) of the regeneration cohorts

(seedlings, saplings) were observed in the selection cutting

stands. Similar results have been obtained in other tree spe-

cies. For example, fragmentation (clear-cutting) did not

change the level of genetic diversity in seedling populations

of mountain hemlock (Tsuga mertensiana [Bong.] Car-

ri�ere), relative to both adults and seedlings in old-growth

forests (Ally and Ritland 2007). No strong effects of small

and low-density forests on the genetic diversity of naturally

established seedling cohorts were likewise detected in

pedunculate oak (Quercus robur L.) (Vranckx et al. 2014).

In the present study, mean pairwise relatedness estimates

(r) in sugar maple (both for adult and seedling cohorts)

were very low (range: �0.001 ≥ r > 0.005; data not

shown), which were indicative of unrelated individuals. It

is plausible that extensive gene flow occurring between

sugar maple populations had compensated for reductions
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in the number of potential parent trees (mature trees)

within selection cutting stands and helped maintain a high

level of diversity in seedling cohorts that have regenerated

after harvesting. Khodwekar et al. (2015) reported that

78–82% of gene flow in a sugar maple stand originates

from outside of the stand. These authors also established

the absence of fine-scale spatial genetic structure (SGS),

suggesting effective dispersal of both seeds and pollen.

Selection cutting influences and implications

We detected a significant deviation from mutation-drift

equilibrium under IAM in the three harvested stands, but

not in the three old-growth stands. This response was par-

ticularly noticeable for mature sugar maples (Tables 4 and

S10). IAM was better at detecting subtle genetic bottle-

necks; microsatellites that are 2-bp repeat units in length

were best modeled by IAM (L�opez-Flores and Garrido-

Ramos 2012). In this study, 15 of 18 microsatellites that

were used were 2 bp in length. In addition, the distribution

of allele frequencies showed the signature loss of a lower

frequency class in selection cutting stands, which indicated

a bottlenecked population (Figs 3, S2 and S3).

Recent bottlenecks, which resulted from logging, are typi-

cally accompanied by reductions in the mean number of

alleles, the number of low-frequency rare alleles, and allelic

richness (Pautasso 2009). In some cases, a reduction in the

level of heterozygosity has been observed (Rajora 1999),

because allelic diversity is reduced more rapidly than

heterozygosity under bottlenecks (Nei et al. 1975; Spencer

et al. 2000). We found no differences in AR, HE,HO, and FIS
between OG and SC stands (Fig. 2). A very low level of dif-

ferentiation between cohorts in SC stands was detected,

while there was no differentiation in OG stands (Table 2).

Thus, it appears that SC had a low negative effect on the

genetic diversity of the remaining mature sugar maple trees.

The negative impact of SC on sugar maple stands was

very weak and could be transient, given that we found (i) a

high level of genetic diversity in sugar maple stands, (ii)

low genetic differentiation between stands (FST ≤0.004)
(Table 1 and Table S7), and (iii) genetic diversity that

resided mostly within populations, as revealed by AMOVA

(Table 2). Low FST values between stands that were sepa-

rated by 80 km indicated high levels of gene flow. Long-

distance effective wind dispersal of pollen is reported for

trees, for example, up to 100 km for Scots pine (Pinus syl-

vestris L., Kremer et al. 2012). Sugar maple is routinely

wind pollinated (Gabriel and Garrett 1984), and its seeds

are dispersed to a maximum distance of 100 m (Johnson

1988). Therefore, pollen gene flow is very important in

sugar maple populations (e.g., Khodwekar et al. 2015).

Low levels of genetic differentiation have been reported for

sugar maple stands at local (FST ≤0.017) and regional scalesT
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(FST ≤0.049; Ontario to Nova Scotia, Canada; Young et al.

1993a,b).

Conclusion

In conclusion, our results indicated that high gene flow in

both old-growth and selection cut stands may be sufficient

to maintain levels of genetic diversity for future genera-

tions. Yet, we also found a negative influence of selection

cutting on mature sugar maple diversity, which creates a

genetic bottleneck. This result contrast with the generally

admitted assumption that selection cut has no impact on

forest genetics. Harvesting on our sites had occurred

18 years prior to sampling, and a second selection cut har-

vest is planned for the same stands. Multiple harvests

compound additional losses of genetic diversity, which

could possibly lead to erosion of maternal genetic diversity

and fixation of deleterious alleles. Selection cutting sys-

tems differ from natural microgap disturbance dynamics.

These systems did not seem to be fully appropriate for

managed sugar maple stands in terms of their effects on

genetic diversity as well as other ecological processes

(Angers et al. 2005). A number of recommendations were

made by Angers et al. (2005) to mitigate the shortage of

mature trees that included varying the intensity level of

selection cutting by leaving mature trees dispersed within

stands or small patches of intact forest within harvested

areas. The implementation of various sylvicultural scenar-

ios may help prevent genetic erosion in sugar maple trees.

Therefore, we strongly recommend the long-term moni-

toring of genetic diversity and ecological structure in sugar

maple cohorts after multiple selection cutting, which is

essential for developing effective sustainable forest man-

agement practices.
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