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We explore the possibility of predicting wood fiber attributes across Newfoundland for two commercial
species: black spruce (Picea mariana (Mill.) B.S.P.) and balsam fir (Abies balsamea (L.) Mill.). Estimates of
key fiber attributes (including wood density, coarseness, fiber length, and modulus of elasticity) were
derived from measurements of wood cores taken from sample plots representing a wide structural gra-
dient of forest stands. Candidate models for predicting fiber attributes at plot and landscape scales were
developed using an information-theoretical approach and compared based on Akaike’s information crite-
rion. The most influential variables were stand age and the presence of precommercial thinning. Other
significant explanatory variables included those that characterize vegetation structure (mean diameter
at breast height, dominant height), climate (annual precipitation, mean temperature of the growing sea-
son), and geography (elevation, latitude) depending on the species and fiber attribute being modeled. At
the plot level, model inference gave root mean square errors of 5.3–11.9% for all attributes. At the land-
scape level, prediction errors were similar (5.4–12.1%), with the added benefit of being suitable for map-
ping fiber attributes across the landscape. The results obtained demonstrate the potential for predicting
and mapping fiber attributes over a large region of boreal forest in Newfoundland, Canada.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

There is a lack of information regarding the variation of wood
fiber attributes across geographic locations for different species.
However, this information is fundamental to optimize fiber use
and improve competitiveness in the forest industry (MacKenzie
and Bruemmer, 2009; Pitt and Pineau, 2009). Wood fiber attributes
provide indicators of wood quality that are linked to product po-
tential and performance (i.e., pulp yield, strength and stiffness of
lumber) (Kennedy, 1995; MacDonald and Hubert, 2002; Zhang
et al., 2002). For example, knowledge of fiber attributes while plan-
ning forest operations can lead to improved fiber input to the paper
mill, leading to optimized industrial processes. Moreover, knowl-
edge about fiber attributes may lead to the development of new
products that require unique attributes. Obtaining information
on fiber attributes is costly because direct measurement typically
requires the extraction of core samples from trees. Thus, models
are needed to predict fiber attributes from forest stand and
environmental factors, which can be measured and mapped more
easily over large areas.
Wood fiber can be described through a large array of attributes,
and the most cited attributes describing wood fiber also corre-
spond to those considered to be the most important for forest
industry: wood density, coarseness, fiber length, and modulus of
elasticity (Bergqvist et al., 2000; Schimleck et al., 2002; van Leeu-
wen et al., 2011; Watson and Bradley, 2009; Watt et al., 2008a).
Many studies emphasize wood density as a key variable because
it is a good indicator of wood strength and stiffness. Wood density
also plays a role in biomass and carbon storage estimation (van
Leeuwen et al., 2011; Zobel and van Buijtenen, 1989).

Studies on wood fiber attributes in boreal forests have focused
on conifer species, such as white spruce (Picea glauca (Moench)
Voss) (Lenz et al., 2012), black spruce (Picea mariana (Mill.)
B.S.P.) (Liu et al., 2007), Scots pine (Pinus sylvestris L.) (Kilpeläinen
et al., 2005), and Sitka spruce (Picea sitchensis (Bong.) Carrière)
(MacDonald and Hubert, 2002). The relationships between wood
fiber attributes and stand variables have been studied mainly in
plantations of softwood species (Lei et al., 2005; Watt et al.,
2008b), and only a few studies investigated those relationships in
natural stands (Wilhelmsson et al., 2002; Liu et al., 2007). Previous
arguments support the idea that environmental factors (climate
and forest inventory variables) influence wood fiber attributes
and provide promising avenues to develop predictive models both
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in managed and natural stands. To our knowledge, no predictive
models using typical forest inventory data are currently available
to inform decisions at the landscape scale.

Climate and site play an important role in tree growth, and
many studies have reported correlations between fiber attributes
and climatic variables. For example, temperature and precipita-
tion influence wood density (Kilpeläinen et al., 2005; Swenson
and Enquist, 2007; Watt et al., 2008b; Wimmer et al., 2002).
Wood fiber attributes have also been linked to forest stand and
tree variables, such as precommercial thinning (MacDonald and
Hubert, 2002), age (Wilhelmsson et al., 2002), diameter at breast
height (DBH, in cm measured at 1.3 m), height (Liu et al., 2007;
van Leeuwen et al., 2011), competition, stand density (van Leeu-
wen et al., 2011), elevation (Swenson and Enquist, 2007), aspect
and slope (Stage, 1976). Most of these relationships were quanti-
fied through various statistical techniques, such as analysis of
variance, generalized linear models, linear mixed effects models,
ordinary least squares regression, path analysis, or stepwise
regression (Bergqvist et al., 2000; Bouriaud et al., 2004; Lei
et al., 2005; Liu et al., 2007; Watt et al., 2008b; Wimmer et al.,
2002). Akaike’s information criterion (AIC) (Burnham and Ander-
son, 2002, 2004; Mazerolle, 2006) is another approach that is well
designed for exploring the effect of multiple predictor variables
and for identifying the most parsimonious models predicting
wood fiber attributes in complex natural environments (Burnham
and Anderson, 2002, 2004; Johnson and Omland, 2004; Mazerolle,
2006).

The overall goal of the study was to model and map wood fiber
attributes across the merchantable forest area of Newfoundland.
Our working hypothesis was that wood fiber attributes of black
spruce and balsam fir (Abies balsamea (L.) Mill.) stands are related
to environmental variables and forest variables measured in exist-
ing inventory plots or available from stand-level maps. Three key
research questions were identified: (1) what are the relationships
between fiber attributes and available forest inventory and envi-
ronmental data? (2) to what extent can the relationships be used
to predict and map fiber attributes across Newfoundland? and
(3) what models can be used with the available spatial data to pro-
duce maps of fiber attributes for Newfoundland? Specific objec-
tives were to:

(i) Identify environmental and forest inventory variables that
can be used to predict wood fiber attributes.

(ii) Develop predictive models at the plot level for estimating
fiber attributes from an extensive database of wood fiber
attributes measured in situ at plot locations.

(iii) Develop predictive models at the landscape level for map-
ping fiber attributes for the island of Newfoundland using
available spatial databases.

2. Methods

2.1. Study site

The study was conducted on the island of Newfoundland
(111,390 km2), located in eastern Canada (Fig. 1) centered around
48�3203000N and 56�0703000W. Topography varies from relatively
rugged with flat valley bottoms in the western part of the island
to gently rolling relief with large areas of low relief in the central
part, and a rolling plateau in the eastern part. The area is character-
ized by the presence of many lakes, bogs, and rivers (Rowe, 1972).
Located within Canada’s boreal forest, the two dominant species
are black spruce and balsam fir. Black spruce accounts for approx-
imately one-third of the forests found on the island. This slow-
growing tree is usually found on very humid or very dry soils
and especially in areas affected by forest fires (Government of
Newfoundland and Labrador, 2011; Mullins and McKnight, 1981;
USDA Forest Service, 1990). Balsam fir stands dominate mainly
moist and well-drained sites.
2.2. Plot-level data

The Newfoundland Department of Natural Resources collects
inventory data through a network of permanent sampling plots
(PSPs). All plots are rectangular in shape, with size varying for
immature and semi-mature stand types and fixed at 1/25 ha for
mature and over-mature types. Plot size is dependent on stand
density and as a rule should contain a minimum of 75 trees. The
PSP program consists of about 1,000 different locations across
Newfoundland in natural and managed stands, and each PSP is
revisited every 4–6 years. All the trees inside a plot are numbered.
Tree characteristics are recorded in a database and updated every
time there is a new inventory (Newfoundland Forest Service,
2011). For this study, a subsample of 194 PSPs (77 black spruce-
dominated plots and 117 balsam fir-dominated plots) was selected
across the island. The subsample targeted three replicates within
each combination of species, height, crown density, and site index
classes in order to capture a wide range of forest growing condi-
tions within the merchantable forest area.

At each PSP, wood cores were extracted from a sample of ten
live merchantable trees to measure fiber attributes. These ten
trees were selected starting at 10 m outside the plot (at a 130� an-
gle) from the plot’s corner where the site conditions were the
most representative of the PSP. The cores were sent to the FPInno-
vations laboratory in Vancouver for analysis of the suite of fiber
attributes using a combination of optical microscopy, image anal-
ysis, X-ray densitometry, and X-ray diffractometry (Downes et al.,
2002; FPInnovations, 2009; Schimleck et al., 2002; Schimleck and
Evans, 2004; Sherson et al., 2007). Density (kg/m3) was measured
at 8% moisture content by irradiating a sample with X-rays and
detecting the amount of radiation transmitted through the sam-
ple. X-ray absorbance was related to density according to Beer’s
Law. The measured density was scaled to match the average den-
sity of the core measured from its volume (micrometry) and its
mass to ensure that average density of the sample matched the
average density predicted by SilviScan technology (FPInnovations,
2009). Coarseness (lg/m) was calculated combining wood den-
sity and tracheid diameter profiles obtained from the SilviScan
analysis. Fiber length (mm) was measured using a HiRes Fiber
Quality Analyzer (HiRes FQA (Hawkesbury, ON)) (a commercial
instrument developed jointly by Paprican, the University of Brit-
ish Columbia, and OpTest Equipment Inc.) using a fiber solution
made from macerated wood cores. Modulus of elasticity (MOE
in GPa), which is a measure of wood stiffness, was estimated from
wood density and diffraction patterns of the wood obtained from
a wide-angle X-ray detector (Evans and Ilic, 2001; FPInnovations,
2009; Sherson et al., 2007).

For all plots with a minimum of three trees of the species of
interest (balsam fir or black spruce), an average plot value
(weighted by basal area of all the sampled trees based on the basal
area of a given species) was calculated for each fiber attribute
(Table 1):

Averaged Mean ¼
X

PSP

Fiber Attributetree � Basal AreatreeP
Basal Areatree

� �
ð1Þ

For each PSP, individual tree measurements were recorded
in situ and aggregated to derive plot-level estimates. Specifically,
DBH and species were recorded for each tree. Height was measured
for a sample of trees at each plot, and species-specific relationships
between DBH and height were developed for each ecoregion and



Fig. 1. Core-sampled plots and forested area across Newfoundland, Canada.

Table 1
Descriptive statistics of wood fiber attributes for black spruce and balsam fir field plots.

Fiber attributes Black spruce (n = 77) Balsam fir (n = 117)

Range Mean S.D. Range Mean S.D.

Wood density (kg/m3) 443.2–635.7 546.5 39.13 373.4–496.8 425.0 29.73
Coarseness (lg/m) 306.8–444.7 382.0 29.37 295.4–410.4 346.6 21.65
Fiber length (mm) 1.72–2.60 2.26 0.18 1.85–2.61 2.23 0.16
Modulus of elasticity (GPa) 7.10–17.63 13.92 2.29 7.61–15.02 11.19 1.48
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used to predict height for all trees. The individual tree diameters
for all trees >9 cm DBH were averaged (arithmetic mean) at the
plot level to obtain an estimate of the mean DBH for each plot.
Dominant height (Hdom) was calculated as the average height
(in meters) of the tallest 100 living trees per hectare. Species com-
position was calculated as the ratio between the sum of all individ-
ual tree basal areas of a given species within a plot and the sum of
all individual tree basal areas within a plot (as a percentage). Com-
position values for black spruce ranged from 16.4% to 100%, and
values for balsam fir ranged from 19.2% to 100%. Stand age (in
years) of the PSP was estimated according to the midpoint value
of an age class range. Elevation (in meters) and latitude (in de-
grees–minutes–seconds) were recorded using a Trimble ProXL glo-
bal positioning system (GPS). Precommercial thinning (PCT) was
recorded for the managed stands.

Climatic variables were interpolated for each PSP using the
ANUSPLIN interpolation method and weather measurements taken
at Environment Canada’s meteorological stations across New-
foundland (McKenney et al., 2007). We considered mean tempera-
ture during the growing season and annual precipitation relevant
to forest productivity (Hamel et al., 2004). Annual precipitation
(mm) was the sum of all monthly precipitation. The mean temper-
ature of the growing season was estimated using temperature-
based rules. The growing season began when the mean daily
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temperature was P5 �C for 5 consecutive days after 1 March and
ended when the average minimum temperature was 62 �C begin-
ning 1 August (McKenney et al., 2007).
2.3. Landscape-level data

Landscape-level forest stand data were acquired from the Gov-
ernment of Newfoundland and Labrador (Newfoundland Forest
Service, 1991). The stand-level maps were polygon based, resulting
from the interpretation of aerial photographs (scale of 1:12,500)
acquired between 1995 and 2008. Several attributes were ex-
tracted from the mapped data, including species composition,
age class, height class, and site class. Species composition at the
landscape level reflected the percentage of balsam fir or black
spruce basal area of a stand derived from the upper limit of the
species composition (Delaney and Osmond, 1977). Crown density
and height were estimated according to the midpoint value of
interpreted class ranges. The same climatic variables described
above were interpolated as raster layers with a 30 m � 30 m grid
resolution from an original resolution of 150 arcseconds (McKen-
ney, 2006; McKenney et al., 2007). Elevation was extracted from
a province-wide elevation grid of 0.75 arcseconds (Canadian Digi-
tal Elevation Data, 2000).
3. Statistical analyses

3.1. Plot-level modeling

For this study, we adopted the information-theoretic approach
based on Akaike’s information criterion (AIC), which is widely used
in ecology (Dochtermann and Jenkins, 2011; Mazerolle, 2006;
Richards et al., 2011) and phylogenetics (Posada and Buckley,
Table 2
List of candidate plot- and landscape-level models applicable to both black spruce and ba

Models Plot

Solo variables
Mod1 Elevation
Mod2 Latitude
Mod3 Annual precipitation
Mod4 Mean temperature of growing season
Mod5 Species compositiona

Mod6 Dominant height
Mod7 Mean DBH
Mod8 Age

Disturbance (D)
Mod9 PCT

Geography (G)
Mod10 Elevation + latitude

Climate (C)
Mod11 Mean temperature of growing season + annual precipitation

Vegetation (V)
Mod12 Mean DBH + age
Mod13 Species composition + dominant height + mean DBH + age

Combined models
Mod14 (G + C + V) Elevation + mean temperature of growing season + annual

precipitation + species composition + dominant height + mean
Mod15 (G + C + D) Elevation + mean temperature of growing season + annual

precipitation + PCT
Mod16 (C + V + D) Mean temperature of growing season + annual precipitation +

composition + mean DBH + age + PCT
Mod17 (G + V + D) Elevation + latitude + species composition + age + dominant hei

Global model
Mod18 Elevation + mean temperature of growing season + annual

precipitation + age + mean DBH + PCT

a Species composition values are different for plot and landscape level.
2004). This approach was well adapted for the present study as
the relationships modeled were complex and involved multiple
predictors (Burnham and Anderson, 2002, 2004; Johnson and Om-
land, 2004; Mazerolle, 2006). The approach consists in specifying a
priori a number of candidate models featuring the attributes of
interest, each model representing a scientific hypothesis. Instead
of relying on P values and the inherent problems of using signifi-
cance testing to select variables, we compared models based on
AIC (Burnham and Anderson, 2002; Mazerolle, 2006). The strength
of evidence in favor of each model was based on the differences be-
tween each model relative to the most parsimonious model (DAIC)
as well as the normalized weights (Akaike weights, xi). The latter
weights were interpreted as probabilities that a given model was
the most parsimonious based on the data set and the models con-
sidered (Burnham and Anderson, 2002). In cases where more than
one model ranked highly, inference was based on the entire set of
models by computing model-averaged estimates and predictions.

Candidate multiple regression models were developed with the
wood fiber attributes as response variables (Y) and the forest stand
and environmental data as explanatory variables (X) following the
form: Y = a + b1X1 + b2X2 + bpXp + ei (Liu et al., 2007; Watt et al.,
2008b), where ei denotes normally distributed errors. Given the
available sample sizes (black spruce n = 77, balsam fir n = 117),
the models were limited to fewer than eight parameters (including
the intercept and residual variance) in order to avoid overparame-
terization and to produce reliable estimates (Burnham and Ander-
son, 2002). The candidate model set was developed based on a
thorough review of the literature to identify variables of influence
from studies covering various softwood species and including gen-
eral knowledge of tree allometry theory (van Leeuwen et al., 2011;
Zobel and van Buijtenen, 1989). The explanatory variables were
separated into four groups representing the main factors expected
to influence the suite of fiber attributes: geography, climate,
lsam fir dominated stands.

Landscape

Elevation
Latitude
Annual precipitation
Mean temperature of growing season
Species compositiona

Height
Crown density
Age

PCT

Elevation + latitude

Mean temperature of growing season + annual precipitation

Crown density + age
Species composition + height + crown density + age

DBH
Elevation + mean temperature of growing season + annual
precipitation + species composition + height + crown density
Elevation + mean temperature of growing season + annual
precipitation + PCT

species Mean temperature of growing season + annual
precipitation + species composition + crown density + age + PCT

ght + PCT Elevation + latitude + species composition + age + height + PCT

Elevation + mean temperature of growing season + annual
precipitation + age + crown density + PCT



Table 3
Pearson’s correlation among fiber attributes estimated at the plot level for black
spruce and balsam fir.

E. Lessard et al. / Forest Ecology and Management 313 (2014) 307–318 311
vegetation, and disturbance. Models were then developed using
each group of variables independently and in various combinations
to represent the influence of each factor (Table 2). Explanatory
variables with (Pearson |r| > 0.70) were not included in the same
model in order to reduce potential collinearity. Considering that
there were moderate to strong correlations among four fiber
attributes (Table 3; Pearson |r| > 0.54 with one exception), the
same candidate models were used to model all four fiber
attributes. Assumptions of homogeneity of variance and normality
of residuals were evaluated with residual plots and with Non-Con-
stant Error Variance (NCV) and Shapiro–Wilk tests, respectively.

The candidate models were ranked according to the AIC
corrected for small sample size (AICc), defined as:

AICc ¼ �2ðlog � likelihoodÞ þ 2K þ 2KðK þ 1Þ
ðn� K � 1Þ ; ð2Þ

where K is the number of estimated parameters in the model
including the intercept and the error term. Models were compared
with the top-ranking model with delta AICc (Di):

Di ¼ AICci �min AICci; ð3Þ

where AICci is the AICc value for a given model i and min AICci is the
AICc value for the ‘‘best’’ model (smallest AICc value). Usually, a
Di < 2 suggests a good model, whereas 2 < Di < 4 suggests a poten-
tially useful model. Models with a Di between 4 and 7 have a weak-
er value, whereas those with Di > 10 indicate models that have low
support (Burnham and Anderson, 2002).

Normalizing the Di yields Akaike weights (xi), which can be
interpreted as the probability that a given model r is the best
among the set of R models:

xi ¼
exp �Di

2

� �
PR

r¼1 exp �Dr
2

� � : ð4Þ

When the top-ranked model has a xi below 0.90, it indicates that
other models also have some strength. In such cases, multimodel
inference (or model averaging) was used to make model-averaged
predictions of fiber attributes based on the entire model set (Burn-
ham and Anderson, 2002). In essence, each prediction made by each
model was weighted by its corresponding Akaike weight, such that a
model with high support contributes more to the prediction than a
model with a lower AICc weight. This approach yielded weighted
average predictions as well as unconditional standard errors and
was used to construct 95% confidence intervals around predictions
(Burnham and Anderson, 2002; Hegyi and Garamszegi, 2011; John-
son and Omland, 2004; Mazerolle, 2006). Following a similar strat-
egy, the effects of the explanatory variables with the most support
(i.e., those included in models with Di < 4) were determined by com-
puting model-averaged estimates, unconditional standard errors,
and 95% confidence intervals (Buckland et al., 1997; Burnham and
Anderson, 2002; Mazerolle, 2012). Explanatory variables for which
the 95% confidence interval excluded 0 indicated that the variable
influenced the response variable.

The remaining explanatory variables were ranked according to
the relative size of their standard error (SE) compared with their
model-averaged estimate: the smaller SE compared with the mod-
el-averaged estimate, the more predictive power was assumed. A
SE of more than half the model-averaged estimate was not consid-
ered to have a good predictive power. Ranking the explanatory
variables of importance was thus possible from the ratio of SE over
the model-averaged estimate.

3.2. Model validation

Model fit was assessed by the root mean square error (RMSE)
and the relative RMSE (RMSEr):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðbY i � YiÞ

2

n

s
RMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½ðbY i � YiÞ�

2Pn
i¼1½Yi�2

vuut
; ð5Þ

where n is the number of PSPs, Y are the observed values of wood
fiber attributes, and bY are the predicted values of fiber attributes
for each model.

Leave-one-out cross-validation (LOOCV) was used to estimate the
prediction error. The sample (n) was divided into a training set (size
n � 1) and a validation set (size 1). The models were fit using the
training set with one observation left out. The process was repeated
until all possible combinations (splits) were tried (Stone, 1974). From
those splits, a cross-validation estimate of the prediction error was
computed for each model. The cross-validation estimates were then
weighted by the Akaike weights (xi) and summed to obtain a
model-averaged estimate of prediction error. All analyses were
executed in R 2.15.0 (R Development Core Team, 2012). Model selec-
tion and multimodel inference were conducted with the AICcmodavg
package (Mazerolle, 2012), and the LOOCV procedure was executed
with the boot package (Canty and Ripley, 2012).

3.3. Landscape-level modeling and mapping

The plot-level models allowed for the prediction of fiber attri-
butes for plot locations, but they did not allow for producing a con-
tinuous map because not all explanatory variables were currently
available as spatial layers. Therefore, landscape-level models were
developed using variables that were conceptually similar to those
used in the plot-level models but were available as spatial layers.
For example, mean DBH was not available from the current
stand-level inventory; therefore, crown closure was used to repre-
sent the vegetation structure. Similarly, height was derived from
the height class interpretation rather than the measured heights
of individual trees. Also, the species composition was derived from
the more general stand-level species label rather than being esti-
mated from the individual tree measurements. Otherwise, all other
predictor variables were the same as those used in the plot-level
modeling. Thus, the landscape-level modeling relied on the same
methods (model selection and validation) as the plot-level model-
ing; however, the models were redeveloped using the explanatory
variables that were available as spatial layers.

The species-specific models were implemented at the polygon
level within ArcGIS™ software (ESRI�, Redlands, California, United
States of America). A geometric intersection (Union) was first per-
formed between the commercial forest stand and PCT layers of the
provincial forest inventory in order to create spatially explicit
polygons of PCT and non-PCT commercial forest stands. A minimal
mapping unit of 0.5 ha was applied. We removed from the analysis
all polygons that were outside the predictable range defined by the
sampling design (i.e., commercial forest stand with height below
9.5 m; crown density lower than 25%). The predictor variables of
interest from the forest inventory consisted of species composition,
age class, height class, crown density class, and PCT. These variables
were maintained in the attribute table of the resulting polygon layer.
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We converted the ordinal variables age class, height class, and crown
density class to numerical values data by using the class midpoints.
PCT remained binary (i.e., 1 if PCT, 0 otherwise), whereas species per-
centages were derived from the species composition attribute using
the upper class limit. For example, a stand with a species label of bSbF
was assigned 75% black spruce and 25% balsam fir, as per Delaney and
Osmond (1977). Mean zonal statistics of raster predictor variables
(elevation, latitude, mean temperature of the growing season, annual
precipitation) were computed for each polygon using the Geospatial
Modelling Environment (GME) extension (http://www.spatialecolo-
gy.com/gme/index.htm) and appended to the existing attribute table.
For each species, the model-averaged equations were applied to each
polygon where the respective species was present in the species com-
position attribute.

4. Results

4.1. Plot-level model selection and inference

Plots of residuals versus predicted values did not reveal
significant outliers or issues with model assumptions. This was
Table 4
Confidence set (95%)a for the plot-level models with the highest AICc weights.

K AICc DAICc

Black spruce
Wood density

Mod16 8 736.26 0.00
Mod18 8 737.82 1.56
Mod13 6 740.40 4.14
Averaged predictions using all models
Leave-one-out cross-validation

Coarseness
Mod16 8 689.19 0.00
Mod17 8 691.18 1.98
Averaged predictions using all models
Leave-one-out cross-validation

Fiber length
Mod13 6 �84.44 0.00
Mod17 8 �84.33 0.11
Averaged predictions using all models
Leave-one-out cross-validation

Modulus of elasticity
Mod17 8 291.28 0.00
Mod16 8 295.08 3.80
Mod13 6 296.51 5.23
Averaged predictions using all models
Leave-one-out cross-validation

Balsam fir
Wood density

Mod18 8 1071.26 0.00
Mod16 8 1073.14 1.88
Mod12 4 1073.65 2.40
Averaged predictions using all models
Leave-one-out cross-validation

Coarseness
Mod18 8 1018.97 0.00
Mod17 8 1022.65 3.69
Mod13 6 1023.73 4.76

Averaged predictions using all models
Leave-one-out cross-validation

Fiber length
Mod17 8 �149.47 0.00
Averaged predictions using all models
Leave-one-out cross-validation

Modulus of elasticity
Mod14 8 365.01 0.00
Averaged predictions using all models
Leave-one-out cross-validation

K; number of parameters including the intercept and the error term; AICc. Akaike’s In
parsimonious model; wi. AICc model weight.

a The 95% confidence set was determined by summing the Akaike weights from large
supported with graphical and statistical tests of homoscedasticity
and normality (not shown). We identified the most parsimonious
models based on model selection (Table 4). For black spruce, the
same two or three models were always within the 95% confidence
set (i.e., the sum of the xi values representing the ‘‘top models’’
was P0.95). For most fiber attributes, the top-ranking model had
at least double the support of the other ones (based on evidence ra-
tios or Akaike weights): i.e., Mod16 for wood density and coarse-
ness, and Mod17 for modulus of elasticity. However, Mod13 and
Mod17 were highly competitive models for fiber length, with
Akaike weights of 0.51 and 0.48, respectively. The top models
across all fiber attributes frequently included vegetation predictors
(age, species composition, mean DBH) and the disturbance predic-
tor (PCT). Among all the predictors, mean DBH and age were com-
mon to all high-ranking models (Mod16, Mod18, and Mod13). For
balsam fir, the top models of fiber attributes varied among six can-
didate models: Mod12, Mod13, Mod14, Mod16, Mod17, and
Mod18. Three models were included in the confidence set for wood
density (Mod18, Mod16, and Mod12) and coarseness (Mod18,
Mod17, and Mod13), whereas only one model was included for fi-
ber length (Mod17) and modulus of elasticity (Mod14). The top
xi R2 Adj. R2 RMSE RMSEr

0.77 0.56 0.53 25.64 4.68%
0.14 0.56 0.52 25.91 4.73%
0.06 0.51 0.48 27.20 4.96%

0.57
28.88 5.28%

0.70 0.58 0.54 18.89 4.93%
0.26 0.57 0.53 19.14 5.00%

0.58
21.33 5.58%

0.51 0.49 0.46 0.13 5.67%
0.48 0.52 0.48 0.12 5.50%

0.52
0.14 6.19%

0.82 0.61 0.57 1.43 10.11%
0.12 0.59 0.55 1.46 10.36%
0.06 0.55 0.53 1.52 10.80%

0.61
1.65 11.85%

0.58 0.45 0.42 21.87 5.13%
0.23 0.45 0.42 22.04 5.17%
0.17 0.40 0.39 22.96 5.39%

0.45
23.39 5.50%

0.78 0.34 0.31 17.49 5.03%
0.12 0.32 0.28 17.77 5.11%
0.07 0.29 0.26 18.20 5.24%

0.35
18.66 5.38%

1.00 0.46 0.43 0.12 5.31%
0.46

0.13 5.83%

0.97 0.47 0.44 1.07 9.47%
0.48

1.15 10.28%

formation Criterion corrected for small sample size; Di. AICc relative to the most

st to smallest until the sum P0.95.

http://www.spatialecology.com/gme/index.htm
http://www.spatialecology.com/gme/index.htm


Fig. 2. Observed vs. predicted values for all fiber attributes (from plot-level model averaging).
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three models for wood density had two predictors in common:
mean DBH and age. For coarseness, age was the only common var-
iable between the three models. For fiber length, the top model
was a combination of geography, vegetation, and disturbance fac-
tors; whereas for modulus of elasticity, the top model included
geography, climate, and vegetation factors.

Given that there was substantial model selection uncertainty
for most of the fiber attributes for both species, we computed mod-
el-averaged predictions based on all the models in the candidate
model set (Burnham et al., 2011). Inference based on all models
in the candidate set resulted in model-averaged estimates of R2

above 0.5 for all black spruce attributes and between 0.35 and
0.48 for all balsam fir attributes. The range of values for black
spruce and balsam fir was relatively distinct for wood density,
coarseness, and modulus of elasticity. Only fiber length showed
similar range and spread for both species. Generally, the plots re-
vealed a small overestimation of the lower values and a small
underestimation of the higher values (Fig. 2). This tendency was
similar for both species.

Wood density of black spruce and balsam fir varied mainly with
mean DBH and age, but other variables also had an effect. Specifi-
cally, black spruce wood density increased with age and species
composition (Table 5). In contrast, wood density decreased with
mean DBH and annual precipitation (Table 5). Wood density in
plots having undergone PCT was lower than in plots that were
not thinned (Table 5). Similarly, balsam fir wood density increased
with age and decreased with mean DBH and annual precipitation
(Table 5).

For coarseness, fiber length, and modulus of elasticity, some
explanatory variables remained important for all attributes
(Table 5). For instance, age was generally a good predictor for most
attributes and for both species, with only one exception (modulus
of elasticity of balsam fir). In all cases, fiber attribute values in-
creased with age. Similarly, PCT was often a good predictor, with
lower fiber attribute values in the plots having undergone PCT. Fur-
thermore, all fiber attributes of black spruce increased with species
composition. In contrast, balsam fir fiber attributes did not vary
with species composition, but varied with geography, climate,
and disturbance variables. For example, coarseness, fiber length,
and modulus of elasticity of balsam fir decreased with elevation,
but for black spruce, only fiber length followed the same pattern.
Additionally, fiber length and coarseness decreased with latitude,
whereas coarseness and modulus of elasticity increased with the
mean temperature of the growing season. Although there were
some common variables among the different balsam fir models,
the explanatory variables varied from one attribute to another.

Prediction errors calculated using LOOCV (Table 4) gave RMSE
values for black spruce of 28.9 kg/m3 (5.29%) for wood density,
21.3 lg/m (5.58%) for coarseness, 0.14 mm (6.19%) for fiber length,
and 1.65 GPa (11.85%) for modulus of elasticity. RMSE for balsam
fir were slightly lower at 23.4 kg/m3 (5.51%) for wood density,
18.7 lg/m (5.39%) for coarseness, 0.13 mm (5.83%) for fiber length,
and 1.15 GPa (10.21%) for modulus of elasticity. These values rep-
resent less than 7% of the mean values for each attribute, except for
modulus of elasticity for which the percentage is a little over 10%.

4.2. Landscape-level model selection and inference

Results obtained at the landscape level were generally similar
to those from the plot-level analysis (Tables 4 and 6). For black
spruce, the same models were often selected but sometimes with
slightly different weights. For balsam fir coarseness and fiber
length, the same models were identified as the top models using
both the landscape and plot-level explanatory variables. For wood
density and modulus of elasticity, different sets of models ranked
higher but with only subtle changes in the list of explanatory vari-
ables. The landscape-level models resulted in only slightly higher
RMSE values from the plot-level models for black spruce (30.6 vs.
28.9 kg/m3 for wood density; 21.9 vs 21.3 lg/m for coarseness;
1.69 vs 1.65 GPa for modulus of elasticity) and the same values
for fiber length (0.14 mm). For balsam fir, RMSE values were also
slightly higher for all attributes except modulus of elasticity
(26.7 vs. 23.4 kg/m3 for wood density, 18.8 vs. 18.7 lg/m for
coarseness, and 1.15 vs 1.14 GPa for modulus of elasticity) and



Table 5
Explanatory variables influencing plot-level fiber attributes in Newfoundland (i.e., 95% CI excludes 0). The explanatory variables are in decreasing order of predictive capability.
Values in parentheses under the unconditional SE are the ratio between SE and the model-average estimates.

Model-averaged estimate Unconditional SE 95% Unconditional confidence interval

Black spruce
Wood density

Age 0.95 0.15 (0.16) 0.65; 1.25
Mean DBH �5.86 1.89 (0.32) �9.57; �2.15
Annual precipitation �0.07 0.03 (0.42) �0.13; �0.02
PCT �28.13 12.18 (0.43) �52; �4.27
Species composition 0.33 0.16 (0.48) 0.02; 0.64

Coarseness
Age 0.49 0.11 (0.22) 0.27; 0.71
Species composition 0.44 0.12 (0.27) 0.22; 0.67
PCT �30.26 8.87 (2.93) �47.64; �12.88

Fiber length
Elevation �0.0004 0.0002 (�0.5125) �0.0009; 2e�06
Age 0.0034 0.0007 (0.2037) 0.0020; 0.0048
Species composition 0.0020 0.0007 (0.3735) 0.0005; 0.0034
Dominant height 0.0286 0.0116 (0.4065) 0.0058; 0.0515

Modulus of elasticity
Latitude �0.623 0.317 (�0.509) �1.245; �0.002
PCT �1.943 0.670 (�0.345) �3.256; �0.630
Species composition 0.040 0.009 (0.214) 0.023; 0.057
Age 0.032 0.009 (0.269) 0.015; 0.049

Balsam fir
Wood density

Mean DBH �5.79 1.01 (0.17) �7.77; �3.81
Age 0.56 0.11 (0.20) 0.34; 0.77
Annual precipitation �0.04 0.02 (0.50) �0.08; �0.01

Coarseness
Elevation �0.05 0.02 (0.03) �0.08; �0.01
Age 0.37 0.09 (0.24) 0.20; 0.55
Mean temperature of growing season 10.64 3.92 (0.37) 2.96; 18.33
Latitude �5.65 1.79 (3.86) �9.16; �2.13
PCT �15.04 5.29 (9.75) �25.41; �4.66

Fiber length
PCT �0.0880 0.0349 (�0.3964) �0.1564; �0.0196
Latitude �0.0450 0.0120 (�0.2661) �0.0685; �0.0215
Elevation �0.0005 0.0001 (�0.2152) �0.0007; �0.0003
Age 0.0025 0.0005 (0.2069) 0.0015; 0.0035
Dominant height 0.0204 0.0056 (0.2753) 0.0094; 0.0314

Modulus of elasticity
Elevation �0.004 0.001 (�0.262) �0.006; �0.002

Mean DBH �0.232 0.052 (�0.226) �0.334; �0.129
Dominant height 0.323 0.063 (0.194) 0.201; 0.446
Mean temperature of growing season 0.846 0.247 (0.292) 0.362; 1.330
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similar values for fiber length (0.13 mm). Overall, these prediction
errors represent <7% of the mean values for each attribute, except
for modulus of elasticity for which the percentage is a little over
10%.

The maps generated using the landscape-level models show the
spatial distribution of each attribute at the island scale (Fig. 3). The
main forested area of black spruce is concentrated in the central
portion of the island. The general distribution of patterns related
to the four fiber attributes is similar, which follows the trend given
in Table 3 for the correlation between fiber attributes. The main
forested area of balsam fir is in the western portion of the island
and the eastern-most peninsula. The four fiber attributes have dif-
ferent distribution patterns although there are some similarities.
The ability to map the results with the landscape-level models gen-
erally came with a small loss of prediction ability when compared
with the plot-level models, as shown by the results in Table 6. The
only exception was the MOE for balsam fir, where prediction levels
were similar.

5. Discussion

We used model selection and multimodel inference to identify
environmental and forest inventory explanatory variables and to
predict wood fiber attributes at the plot and landscape levels.
The coefficients of determination (R2) for black spruce (0.52–
0.61) and for balsam fir (0.35–0.48) suggested a persistent trend:
predictive models always had higher R2 for black spruce than for
balsam fir. However, the predictive models for both species
showed relatively similar RMSE, indicating similar predictive abil-
ity for both species. The higher R2 for black spruce are likely the re-
sult of a greater range of values for the response variables.
Regardless, our model-averaging approach showed similar capabil-
ities to predict fiber attributes for both species.

The predictive models of the two species were primarily influ-
enced by two explanatory variables: stand age and PCT. Stand
age was also raised as a potential variable by van Leeuwen et al.
(2011) under the assumption that, when trees grow older, juvenile
wood reduces or disappears, which favors increasing wood density.
Not surprisingly, PCT also stands out as an important predictor of
fiber attributes. Stand thinning reduces competition among the
remaining trees by providing a wider space to grow, resulting in in-
creased diameter growth (MacDonald and Hubert, 2002). The ef-
fect of other, less dominant, explanatory variables varied
between fiber attributes and for both species. For instance, species
composition influenced all black spruce attributes, but this was not
the case for balsam fir. Besides stand age and PCT, black spruce
wood density was also influenced by species composition, mean
DBH, and annual precipitation, whereas balsam fir wood density



Fig. 3. Predicted spatial distribution of fiber attributes across Newfoundland for stands containing black spruce and balsam fir.
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was influenced by only three explanatory variables: stand age,
mean DBH, and annual precipitation. Relationships similar to those
found in this study have been reported for other tree species
(Kilpeläinen et al., 2005; MacDonald and Hubert, 2002; van Leeuwen
et al., 2011). The influence of mean DBH on wood fiber properties
was suggested by Liu et al. (2007) when investigating yield and
lumber quality. In our study, mean DBH was a significant explana-
tory variable but only for wood density and generally not for the
other fiber attributes (with the exception of the modulus of elastic-
ity of the balsam fir). Overall, fiber characteristics were influenced
most by vegetation and disturbance variables combined with addi-
tional influences from climate and geographic variables.

The information-theoretic approach permitted a comparison of
models with different types of variables and provided a measure of
support for each. We used this approach over the more commonly
used stepwise regression approach, as the latter can be strongly
dependent on the method (backward elimination, forward selec-
tion, stepwise) and the choice of a level, does not account for mul-
tiple testing, and assumes that the analyst knows nothing about
the system under study (Burnham et al., 2011; Mazerolle, 2006).
In contrast, the approach used in this study relied on the specifica-
tion of relevant models that reflect biologically interesting hypoth-
eses and provided measures of support in favor of each model/
hypothesis. More importantly, model selection was based on infor-
mation criteria and derived measures that quantified the uncer-
tainty regarding the best model, acknowledging that some
models may be equivalent. The results suggested that for wood
density and coarseness, inferences be based on the entire model
set, whereas for fiber length and modulus of elasticity, a single
model was adequate.

The landscape models offer several advantages as an opera-
tional tool to support forest management planning. Implementa-
tion of the models in a GIS to generate maps reveals the spatial
patterns of fiber attributes across the island. If a stand contains
both spruce and fir according to the stand type, the models offer
separate predictions of fiber attributes for each species. Moreover,
now that the models are developed, it is not necessary to go back
and take core samples and measure fiber attributes in order to up-
date the maps. Rather, once the inventory stand maps are updated,
the models can be used to predict the fiber attributes.

Although this study provides models that predict how fiber
attributes vary from stand to stand and across landscapes, under-
standing ‘‘why’’ fiber attributes vary is equally important. Wood fi-
ber attributes are determined by forest and environmental factors
that interact with one another in complicated ways. Understanding
the nature and complexity of these interactions is important to
support forest management activities geared toward the produc-
tion of wood with specific characteristics. Further research is thus
necessary to test specific hypotheses related to tree growth, wood
formation, and the development of fiber attributes.

Several additional limitations were identified in the study sug-
gesting further research to improve the models and their applica-
tion. Despite efforts to use relevant variables, other important
explanatory variables may have been missed. For example, vari-
ables describing average wind speed, distance to the coast, soil
moisture, and surficial geology may help to account for unex-
plained variance and improve predictions. As these variables were
not available for landscape-level application, they were not pur-
sued in this study. The analysis clearly showed the importance of
variables describing the vegetation. Yet, the available explanatory
variables (e.g., age, height, and crown density) provide a relatively
coarse representation of structure. Some variables identified in the
literature as important drivers for fiber attributes were not identi-
fied as important in the present study (i.e., stand density). The fact



Table 6
Confidence set (95%) for the best fiber attributes models for black spruce and balsam fir (landscape level).

Confidence set for the best model (95% confidence set)

K AICc DAICc xi R2 Adj. R2 RMSE RMSEr

Black spruce
Wood density

Mod17 8 744.64 0.00 0.66 0.51 0.47 27.08 4.94%
Mod13 6 746.57 1.94 0.25 0.47 0.44 28.31 5.17%
Mod16 8 749.65 5.01 0.05 0.48 0.44 27.97 5.11%
Averaged predictions using all models 0.51
Leave-one-out cross-validation 30.59 5.60%

Coarseness
Mod16 8 692.94 0.00 0.70 0.56 0.52 19.36 5.05%
Mod17 8 694.71 1.77 0.29 0.55 0.51 19.58 5.11%
Averaged predictions using all models 0.56
Leave-one-out cross-validation 21.87 5.73%

Fiber length
Mod17 8 -84.99 0.00 0.65 0.52 0.48 0.12 5.47%
Mod13 6 -83.62 1.37 0.33 0.48 0.45 0.13 5.70%
Averaged predictions using all models 0.53
Leave-one-out cross-validation 0.14 6.19%

Modulus of elasticity
Mod17 8 294.96 0.00 0.84 0.59 0.55 1.46 10.36%
Mod16 8 298.29 3.33 0.16 0.57 0.53 1.49 10.58%
Averaged predictions using all models 0.59
Leave-one-out cross-validation 1.69 12.14%

Balsam fir
Wood density

Mod17 8 1102.44 0.00 0.53 0.29 0.25 24.98 5.86%
Mod18 8 1103.83 1.40 0.26 0.28 0.24 25.13 5.90%
Mod15 6 1105.02 2.58 0.14 0.24 0.22 25.76 6.05%
Mod13 6 1106.85 4.42 0.06 0.23 0.20 25.96 6.09%
Averaged predictions using all models 0.33
Leave-one-out cross-validation 26.74 6.29%

Coarseness
Mod18 8 1021.92 0.00 0.68 0.32 0.29 17.71 5.10%
Mod17 8 1023.45 1.53 0.32 0.32 0.28 17.83 5.13%
Averaged predictions using all models 0.33
Leave-one-out cross-validation 18.85 5.44%

Fiber length
Mod17 8 -145.61 0.00 1.00 0.44 0.41 0.12 5.39%
Averaged predictions using all models 0.44
Leave-one-out cross-validation 0.13 5.83%

Modulus of elasticity
Mod18 8 363.2 0.00 0.98 0.48 0.45 1.06 9.40%
Averaged predictions using all models 0.48
Leave-one-out cross-validation 1.14 10.19%
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that the fiber trees were selected outside the plot is also a possible
source of error considering that differences may exist between the
trees selected and those inside the plot. Recent research has shown
that a more comprehensive representation of stand structure is
possible from metrics derived from light detection and ranging
(LiDAR) technologies (van Leeuwen et al., 2011). Even finer-scale
structural metrics may be generated from terrestrial LiDAR scans
combined with architectural models (Côté et al., 2012). Airborne
laser scanning systems provide increasing capabilities to map de-
tailed structural variables including mean DBH and dominant
height of conifer forests (Luther et al., in press). With respect to
the maps generated with the landscape-level models, we assumed
that the explanatory variables available from the inventory stand
maps were up to date and 100% correct. However, the inventory
cycle is typically 10–15 years, meaning that the mapped informa-
tion could be 10–15 years out of date. Moreover, the scale of map-
ping at the stand level was adequate for strategic planning, but
increased precision would help to better inform operational har-
vest planning. Finally, although the RMSE provide a level of valida-
tion of the models, validation was not possible at the map level
because validation of the input layers was not available. Advances
in the availability and capabilities of airborne laser scanning
systems offer increased opportunities to address current limita-
tions in producing detailed forest structural information to support
prediction and mapping of fiber attributes.
6. Conclusion

The results of this study show that wood fiber attributes can be
modeled using explanatory variables contained in existing forest
inventory systems combined with other environmental variables
describing climate and geography. Our analyses showed that vari-
ables describing the vegetation (age and mean DBH) and distur-
bance (PCT) were important explanatory variables in all models
developed at both the plot and landscape levels. Additionally, envi-
ronmental variables describing elevation, latitude, annual precipi-
tation, and mean temperature of the growing season, were linked
to many fiber attributes but to a smaller extent than the vegetation
and disturbance variables. Modeled average prediction errors were
less than 5% for most fiber attributes and 10% for modulus of elas-
ticity at both the plot and landscape levels. Accordingly, the land-
scape-level models could be used to make spatial predictions of
fiber attributes spanning wide gradients of geography and climate
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across the productive forest area of the island of Newfoundland
with a total land area >100,000 km2.

Few studies have provided guidelines on the capacity to predict
wood fiber attributes at the landscape level or over large areas. The
apparent dominance of the vegetation variables to predict wood fi-
ber is useful, so further research should focus on improved mea-
surement capability in forest inventory for these variables.
Spatially explicit estimation of relevant structural variables may
be a challenge to map for large areas. However, the availability of
high spatial resolution satellite images and airborne LiDAR data
is likely to improve our ability to apply predictive models such
as those presented in this study.
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