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Landscape-Scale Influence of Topography on
Organic Layer Accumulation in Paludified Boreal
Forests
Ahmed Laamrani, Osvaldo Valeria, Nicole Fenton, and Yves Bergeron

The aim of this study was to quantitatively investigate the relationship between topographic variables and organic layer thickness (OLT) and to use these relationships
for mapping OLT distributions at the landscape scale within the paludified boreal forests of eastern Canada. Topography was quantified by a set of predictor variables
(slope, elevation, aspect, mean curvature, plan curvature, and profile curvature) that were extracted from a LiDAR-derived digital terrain model (DTM) with four
resolutions (1, 5, 10, and 20 m). OLT was collected from field measurement (n � 1,600) across the landscape and varied from 5 to 150 cm. Weak correlations between
OLT and individual topographic variables were obtained at the landscape scale. Stratification by aspect did not significantly improve these correlations. Consequently,
regression tree analysis divided the data into six different landscape units, based on slope, aspect, and mean curvature. The resulting landscape units delimited the major
patterns of OLT and elucidated three spatial relationships between OLT and topographic variables: greater OLTs (mean � 62 cm) were confined to gentle slopes (�1.8%),
whereas lower OLTs (mean � 27 cm) were found in steeper slopes (slope �3.2%); OLTs were deeper on south- and west-facing than on north- and east-facing slopes;
and the most accurate results were obtained by the LiDAR-derived DTM at 10- and 20-m resolutions. A thematic productive map of the distribution of the resulting six
landscape units showed good matching (71%) with both vulnerable and promising areas for forest management. This study confirmed the fact that topographic variables
influence OLT at the landscape scale, which had been previously reported at the plot scale within the Clay Belt.
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Boreal northern black spruce forests are characterized by the
development of thick organic layers in regions prone to
paludification such as the interior of Alaska, the Canadian

Hudson Bay-James Bay lowlands, and the western Siberian plain.
Paludification is a natural process in which organic material accu-
mulates on the forest floor over time and is generally thought to be
caused by increasing soil moisture (Crawford et al. 2003, Vygods-
kaya et al. 2007). This process creates wetter conditions that lead
over time to a reduction in soil temperature, decomposition rates,
microbial activity, and nutrient availability (Lavoie et al. 2005).
This promotes the growth of sphagnum mosses (Fenton et al. 2005,
Fenton and Bergeron 2007) and the conversion of potentially for-
ested areas to large bog landscapes, largely resistant to forest estab-

lishment and growth (Crawford et al. 2003), consequently, leading
to a marked decrease in forest productivity (Simard et al. 2007,
2009). In addition to these factors, time since last fire and topogra-
phy play important roles in the occurrence of paludification in these
regions. Although the effect of topography on organic layer thick-
ness (OLT) has been well studied at the plot scale, there is no
research, to our knowledge, documenting the effect of topography
at the landscape scale.

In the Clay Belt, a region of the Hudson Bay-James Bay lowlands
of boreal eastern Canada, OLT usually displays high spatial variabil-
ity both at the landscape and plot scale. This variability in OLT
within Clay Belt black spruce forests is largely influenced by time
since last fire and topography. Moreover, an understanding of the
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causes of this variability is important for accurately predicting the
locations of highly paludified areas as well as their impacts on forest
management. Consequently, there is an increasing practical demand
for maps that contain information concerning variation in OLT and
topography in paludified areas. The end users of this information are
involved mainly in forest management (i.e., forest planning and
productivity assessment).

Within paludified forests, there have been few studies that de-
scribe or analyze topographic factors that influence the spatial dis-
tribution and accumulation of organic layers at larger scales (i.e.,
Emili et al. 2006, Seibert et al. 2007). Other studies have been
conducted at larger scales to characterize the influence of topogra-
phy on soil properties; however, these studies have been largely
restricted to well-drained hardwood in the south of the boreal forest
(i.e., Martin and Timmer 2006, Johnson et al. 2009). Previous
studies that have tried to relate OLT to topography in the Clay Belt
region have been limited to either the plot scale or to only slope
estimates as the controlling variable (Giroux et al. 2001, Fenton et
al. 2005, Lavoie et al. 2005, Lecomte et al. 2005, Simard et al. 2007,
2009). As yet, no research has tested whether the plot-scale relation-
ship between slope and OLT can be observed at larger scales (i.e.,
landscape scale) or whether other topographic variables could influ-
ence OLT individually or in combination with slope. Until recently,
the availability of accurate topographic information regarding the
organic layer at larger scales (landscape or regional) was a limiting
factor for both land management and modeling of spatial OLT
variability. Recent advances in remote sensing now permit the gen-
eration of appropriate data for determining these relationships.
Consequently, there is much interest in relating different OLT in-
formation to high-resolution topographic data. These data, in turn,
can be used to generate topographic variables such as slope, aspect,
elevation, or curvature. In this context, high-resolution airborne
laser scanning (also known as LiDAR [light detection and ranging])
is becoming one of the most effective and reliable remote-sensing
technologies for assessing topography at both the plot and landscape
scales in boreal forested environments (i.e., Hodgson et al. 2003,
2005, Hyde et al. 2005, Webster et al. 2011, Work et al. 2011,
Southee et al. 2012). The objective of this study was to quantita-
tively investigate the relationship between topographic variables and
OLT and to use these relationships for mapping OLT distributions
at the landscape scale within the black spruce forests of the Clay Belt.
To do so, we correlated field OLT measurements (response variable)
obtained by manual probing with topographic variables (predictor
variables) derived from LiDAR digital terrain models (DTMs).

Materials and Methods
Study Area

The study sites were located within an area of approximately 720
ha of boreal forest in the southwestern James Bay Lowlands physio-
graphic region of Quebec and, more precisely, in the Clay Belt
region that spans 125,000 km2, mainly above 49°N across the On-
tario-Quebec border (Figure 1A). This study is part of a larger
project that deals with the effects of environmental variables and
forest harvesting on paludification. The dominant landforms in the
area are gently sloping plains, which were generated by extensive and
thick glaciolacustrine clay deposits left behind by the proglacial Lake
Ojibway (Veillette 1994). Bedrock outcrops and gentle hills are also
found in the area. Elevation ranges between 289 and 315 m, with an
average of 304 m above sea level. Within the study area, ground
surface slope ranged from 0.1 to 14.9%; about 45% of the area had

a slope �2%. Many drainage courses run locally in a southwestern
direction through the study area to produce a relatively complex
topographic pattern in this hilly landscape relief (Figure 1B).

Black spruce (Picea mariana [Mill.] BSP) and jack pine (Pinus
banksiana Lamb.) dominate stands in the study area, constituting 79
and 16% of the canopy, respectively. These species are followed by
trembling aspen (Populus tremuloides Michx), which occupies about
4% of the study area. The remaining 1% of the area is covered by
tamarack or eastern larch (Larix laricina [Du Roi] K. Koch), balsam
fir (Abies balsamea [L.] Miller), and paper birch (Betula papyrifera
Marshall). The forest floor is composed of Sphagnum spp., feather
mosses (principally Pleurozium schreberi [Brid.] Mitten), and
shrubs, (mainly dwarf ericaceous species), with variable coverage
across the landscape. The mean annual temperature is �0.7° C, and
the mean annual precipitation is 906 mm (Environment Canada
2011; Matagami weather station, approximately 60 km northeast of
the study area).

Sampling Design and Field Data Collection
The study goals were addressed by establishing transects over

representative forest stands at the landscape scale. We used provin-
cial Forest Inventory Maps from the Quebec Ministry of Natural
Resources (MRNQ) within a geographic information system (GIS)
and information collected during field visits to select stands repre-
senting a broad range of OLT, slope inclinations, and stand produc-
tivities. Such attributes were obtained from the interpretation of
data available from the Forest Inventory Maps of the MRNQ (i.e.,
cover density classes, age classes, species, height classes, and slope
classes).

For the purposes of providing a spatially continuous cross-sec-
tional profile of OLT at the landscape scale, field data were acquired
along and between continuous transects. Thirteen transects, total-
ing 15 km in length, were established across four different sectors,
running from northeast to southwest (sectors 2 and 3) and north-
west to southeast (sectors 1 and 4) (Figure 1B). Within each sector,
a minimum of 20 m was maintained between transects, and OLT
was measured manually using a standard auger at intervals of 10 m
along each transect. At each sampling point, the auger bored
through the organic layer until the mineral soil was encountered.
The auger was then removed, and the marked depth to mineral soil
was accurately measured (OLT ranging from 5 to 125 cm) (Figure
2). The thickness of the organic material was taken as the distance
between the organic layer surface and the mineral soil interface. In
nearly all cases, the transition between the organic layer and mineral
soil was clearly marked by an obvious change in color and texture
(Figure 2). When the full length of the auger (�125 cm) was in-
serted into the organic layer without contacting the mineral soil, the
corresponding point was marked as deeper than 125 cm. These sites
were excluded because it was technically impossible to measure
depths greater than 125 cm while measuring so many points. There
are only 17 sites (about 1% of the entire data) that were excluded
from the analysis, which should not affect the result. An additional
85 circular plots of 400 m2 were randomly distributed between
transects over the study area and sampled for forest canopy measure-
ments, soil samples (not included in this article), and organic layer
information. A 30 � 30-cm pit was dug in each of the 85 plots and
depth to mineral soil (total OLT, ranging from 7 to 150 cm) was
recorded, together with an accurate measurement of the thickness of
each individual soil organic horizon (cm). For the entire data set
(n � 1,600; sampling points along transects and plots), the nature of
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the underlying mineral deposits was recorded in the field as clay, till,
or bedrock; however, their effects, together with those of time-since-
last fire, on OLT were not examined in this study, because they will
be dealt with in a future study.

LiDAR Processing and Topographic Variable Measurements
LiDAR data were collected over the study area in late May 2010

using a Multipulse Leica ALS50 phase II airborne laser scanner.
LiDAR acquisition was conducted with an average sampling of 2.8
points/m2 and an absolute vertical accuracy of 0.065 m (root mean
square error). All collected LiDAR data were preprocessed by sepa-
rating canopy pulse returns from ground pulse returns. Inverse dis-

tance weighting was used as the grid interpolating model and for
predicting z values within the study area. The latter data were used
to produce a DTM with a basic cell resolution (cell size) of 0.5 m
using ArcGIS 10.0 (Environmental Systems Research Institute
[ESRI] 2011). Spatial Analyst tools (ArcGIS) were used to generate
different DTMs of the selected topographic variables at four cell
resolutions (1, 5, 10, and 20 m). A detailed description of each
selected topographic variable (elevation, slope, aspect, mean curva-
ture, plan curvature, and profile curvature) is provided in Table 1.
The DTM cell corresponding to each field sampling point was
determined and the values of its topographic variables were
calculated at the four cell resolutions. These data were used for two

Figure 1. Study area located in the Clay Belt region (A) with a DTM derived from LiDAR data (B) and sampling point locations along 13
transects that were established across four sectors (1, 2, 3, and 4).
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purposes: to determine how the extracted values of topographic
variables are sensitive to DTM resolutions and to evaluate the cor-
relations between the OLT and individual topographic variables.

Statistical Analysis
Preliminary statistical analysis was done using backward stepwise

linear regression to investigate which topographic variables signifi-
cantly influence OLT at the landscape scale. All topographic vari-
ables that were used in the stepwise regression analysis were tested
for multicollinearity and their coefficients of variation (CVs), which
were calculated as their SDs divided by the respective means, were
used to evaluate the distribution of the data and the interactions
between different topographic variables and OLT. Two nonpara-
metric methods, Spearman’s rank correlation and regression tree

analysis, were also used. Because many of the topographic variables
were highly intercorrelated (Pearson’s r �0.7) and had highly
skewed distributions, we used Spearman’s rank correlation (rs) in-
stead the usual parametric product-moment correlation coefficient
(r). Spearman’s coefficient has been used in similar studies with
larger data sets that are characterized by a high degree of heteroge-
neity (e.g., Seibert et al. 2007, n � 1,300–4,000 points). The high
CVs (�0.56) for OLT also suggested that the data had a strongly
skewed distribution. For these reasons, no attempt was made to
explore the relationships between OLT and topographic variables
using multiple regression or linear mixed-effects models.

A common way of spatially segmenting the landscape is to divide
it into internally homogeneous and mutually contrasting units
(Mulder et al. 2011). Landscape segmentation involves grouping

Figure 2. Photographs from the study area. At each sampling point, the auger was bored through the organic layer until the mineral
soil was encountered (A and B) and then the depth to mineral soil (represents the OLT) was clearly identified (pointer finger on C) and
measured (distance between flag mark and pointer finger on D).

Table 1. Topographic variables measured from LiDAR-derived DTMs of the study area.

Topographic variables Description

Slope Gradient or rate of maximum change in z value from each cell of a raster surface (%).
Elevation Refers to how high above sea level a particular location in the study area is; also known as z value (m).
Aspect Direction of the maximum rate of change in the z value from each cell to its neighbors. The value of each cell in an aspect data set (0° up to

360°) indicates the direction the cell’s slope faces (N, NE, E, SE, S, SW, or NW). Each of these directions represents an interval of 22.5°.
Mean curvature† Represents the roughness of the terrain and corresponds to the second derivative of the surface or the slope of the slope. A positive curvature

indicates that the surface is upwardly convex at that cell, whereas a negative curvature indicates the surface is upwardly concave at that
cell. Profile and plan are two output curvature types.

Plan curvature Perpendicular to the direction of the maximum slope. Sidewardly convex surfaces have a positive value, sidewardly concave surfaces have a
negative plan, and linear areas have a value of zero. Profile curvature relates to the convergence and divergence of flow across a surface.

Profile curvature Parallel to the direction of the maximum slope. Upwardly convex surfaces have a negative value, upwardly convex surfaces have a positive
plan, and flat areas have a value of zero. Profile curvature affects the acceleration or deceleration of flow across the surface.

The reasonably expected values of curvature rasters (curvature, plan, and profile) for a hilly area (moderate relief) can vary from �0.5 to 0.5, whereas for steep, rugged
mountains (extreme relief), the values can vary between �4 and 4 (ESRI 2011).
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similar topographic variables into distinct spatial units, which can
then be used as treatments for spatial analysis (Pennock and Corre
2001). Therefore, we used regression tree analysis as an automated
landscape segmentation method to identify spatial units that could
empirically model the complex interactions among topographic
variables in controlling OLT distribution. The regression tree ap-
proach was well suited to the analysis of our data sets for several
reasons: (1) its potential to successfully predict soil organic matter
distribution and to analyze ecological data has been demonstrated
(i.e., De’Ath and Fabricius 2000, Johnson et al. 2009, Häring et al.
2012); (2) it is capable of handling both categorical and quantitative
data (Johnson et al. 2009); (3) it allows complex interactions among
predictor variables with no assumptions of linearity (Rothwell et al.
2008); (4) the regression tree method repeatedly splits the response
data (in our case, OLT) into more homogeneous groups, based on
the predictor variables and predictor values (or identifiers, if cate-
gorical, i.e., aspect variable), which results in a tree diagram that is
easy to read and interpret (Johnson et al. 2009); and (5) recursive
partitioning of the data set into more homogeneous groups allows
the identification of potential relationships between the response
variable and the environmental predictors, while also identifying
interactions among these latter independent variables (Rothwell et
al. 2008). In each resulting spatial unit, rules defining how the data
were to be partitioned were selected based on a significance test of
independence between covariates and the response variable, and a
split was established when the P value was smaller than � � 0.05
(Hothorn et al. 2006). In this study, the resulting spatial units were
named “landscape units” that refer to relatively homogeneous areas
in term of OLT distribution. All statistical analyses were performed
in R (R Development Core Team 2011). Regression trees were
implemented using the ctree function in the party package (Ho-
thorn et al. 2006).

Results
Effect of Different LiDAR-Derived DTM Resolutions on the Values
of Topographic Variables

Figure 3 shows that both elevation and aspect are invariant with
changes in resolution, whereas variation strongly decreased as spatial
resolution decreased for the mean curvature, plan curvature, and
profile curvature. Median and range estimates of elevation did not
indicate significant bias (Figure 3A), whereas those of slope de-
creased markedly with decreasing resolution (Figure 3B). Aspect
did not show any obvious trends across the different resolutions
(Figure 3C). The range of values of all curvature variables (curva-
ture, plan, and profile) decreased clearly with decreasing resolution,
whereas the medians did not vary with changes in resolution
(Figure 3D�F).

Correlations Between OLT and Topographic Variables Based on
Different DTM Resolutions

Extracted values of topographic variables at each sampling point
were used to graphically illustrate and evaluate the effect of resolu-
tion on OLT (Figure 4; Table 2). Even though Spearman’s rank
correlations were considered weak (rs �0.56) (Table 2), most were
statistically significant and provided some insight into which factors
influenced the spatial distribution and accumulation of the organic
layer at the landscape scale. Of the topographic variables examined,
slope had the strongest correlation with OLT across the 5- to 20-m
DTM resolutions. Across all DTMs resolutions, slope was consis-

tently and negatively related to OLT (P � 0.001). Figure 4A illus-
trates the tendency of OLT to generally decrease with increasing
slope over the landscape.

Elevation and OLT were significantly positively correlated (rs �
0.12, P � 0.001) at all resolutions. However, the correlation is weak
(rs � 0.12) as illustrated by the marked scatter of the data (Figure
4B), and no clear trend could be seen when the whole data set was
used (n � 1,600).

The reasonably expected values of plan and profile curvatures
variables (extracted from LiDAR-derived DTM) for our study area
(moderate relief) should vary from �0.5 to 0.5 (ESRI 2011). How-
ever, 72 to 97% of plan and profile curvatures values at 1- and 5-m
resolutions were outside this expected range and consequently were
excluded from the analysis. At the 10- and 20-m resolutions, the
correlation between OLT and all curvature variables indicated that
OLT tended to decrease with convexity. This result is in accord with
landscape observations for which thinner organic layers are habitu-
ally associated with areas having convex slopes. At the 10- and 20-m
resolutions, coefficients of correlations were significantly higher for
convex curvatures (mean, plan, and profile) than those for the con-
cave curvatures. All correlations between concave curvatures (mean,
plan, and profile) and OLT were very small and not significant at the
1- and 10-m resolutions (Table 2).

Because aspect was not measured on a linear scale (circularly
disturbed), it was excluded from the correlation analysis (Table 2).
To determine whether correlations between OLT and other topo-
graphic variables improved with aspect stratification, correlations

Figure 3. Box plots of topographic variables for four DTM reso-
lutions. (A) Elevation. (B) Slope. (C) Aspect. (D) Mean curvature. (E)
Plan curvature. (F) Profile curvature. The lower and upper edges of
the box represent the 25th and 75th percentiles, and the median is
represented by the band in the middle of the box. Whiskers rep-
resent the lower and upper extremes (lowest and highest values,
respectively).
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between OLT and topographic variables were calculated for main
aspect classes, which are summarized in Tables 3 and 4 (20-m res-
olution data only). From Table 3, we can deduce that 81% of
sampling points had an aspect ranging from southeast (southeast
[SE], south [S], or southwest [SW]) to west (W), whereas only 19%
had a northern (northwest [NW], north [N], or northeast [NE]) or
eastern (E) exposure. Average OLT in areas with southern and west-
ern aspects (SE � S � SW � W) was higher than that in areas with
northern or eastern aspects (NW � N � NE � E). In addition, CVs
for OLT were relatively high (�0.35), suggesting that aspect strat-
ification did not notably reduce the variability within most of the
aspect classes and the existence of interactions between different
landscape topographic variables and OLT.

Results of Spearman’s rank correlations between OLT and indi-
vidual topographic variables for each major aspect class, as well as

their improvement or diminution with regard to all the data, are
shown in Table 4. �rs values were calculated as the absolute rs for the
aspect class minus the absolute rs of all the data (n � 1,600) listed in
Table 3. After aspect stratification, most coefficients were still very
small or not significant, even though some strong relationships ex-
isted between the S, SE, W, and N classes and OLT, especially for
10- and 20-m resolutions.

The correlation between slope and OLT for the S aspect class was
significantly improved with respect to the collective data set (rs �
�0.70, P � 0.001, and �rs � 0.14). This relation, in which OLT
increased as slope decreased in the S aspect, is illustrated in Figure
5A. To test the significance of �rs, we performed an omnibus test of
homogeneity among the eight aspect classes (k � 8) in terms of their
Spearman’s rank correlations, which takes the form of a
�2-distributed test. For example, at the 20-m resolution, estimates
of slope correlations with OLT indicated very strong differences
among the eight aspect classes in Table 4 (overall �2 � 92.85,
df � 7, P � 0.001).

Figure 4. Relationships Between OLT and topographic variables at 20-m DTM resolution (n � 1,600). (A) Slope. (B) Elevation. (C) Mean
curvature. (D) Profile curvature. (E) Plan curvature.

Table 2. Spearman rank correlations Between OLT and topo-
graphic variables at different DTM resolutions.

Topographic variables

rs at DTM resolution of

01 m 05 m 10 m 20 m

Slope �0.13* �0.46* �0.53* �0.56*
Elevation 0.12* 0.12* 0.12* 0.12*
Mean curvature �Convex	 �0.01 0.01 �0.15* �0.25*
Mean curvature �Concave	 �0.00 �0.08† 0.06 0.14*
Plan curvature �Convex	 �0.01 �0.02 �0.12* �0.22*
Plan curvature �Concave	 �0.06 �0.09‡ 0 0.08†
Profile curvature �Convex	 �0.00 0.01 0.15* 0.27*
Profile curvature �Concave	 �0.02 0.08† �0.07 �0.16*

n � 1,600.
* P � 0.001.
† P � 0.01.
‡ P � 0.05.

Table 3. OLT data for major aspect classes for the study area.

Variable n

OLT

Mean (cm) SD (cm) CV

North 57 45 19 0.42
Northeast 32 43 15 0.35
East 82 35 16 0.46
Southeast 224 39 25 0.64
South 459 43 28 0.65
Southwest 231 53 28 0.53
West 386 48 22 0.46
Northwest 129 44 19 0.43
All data 1600 45 25 0.56

n represents number of sampling points.
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The correlation with elevation in the W aspect class was poten-
tially improved with regard to the collective data set (rs � 0.49, P �
0.001, and �rs � 0.37) at the 20-m resolution, suggesting that
organic layer accumulation was more pronounced at higher, rather
than at lower elevations (Figure 5B). An important increase in the
correlation coefficient was also found in the W aspect class at the 1-,
5-, and 10-m resolutions with �rs values of 0.09, 0.24, and 0.33,
respectively.

For all curvature variables (mean, plan, and profile), the correla-
tion coefficient was generally higher than that for the collective data
set, primarily at the 20-m resolution (Table 4). A significant increase
in the correlation coefficient of convex-mean curvature (rs �
�0.38, P � 0.01, and �rs � 0.13) and convex-plan curvature (rs �
�0.52, P � 0.01, and �rs � 0.30) was found in the SE aspect class
(Table 4) compared with that in the collective data set. These neg-
ative correlations suggest that shallow organic layers were, in large
part, confined to convex areas (Figure 5C). Correlations for some
plan curvature and profile curvature variables were substantially
improved in the N aspect class (Table 4), but these were not in-
cluded in the interpretation because of the lower sample size. For
example, the correlation of the OLT and the north-facing concave-

profile curvature had rs � �0.50, P � 0.01, �rs � 0.34, and n � 28
(second column and last row of N aspect class in Table 4).

Regression Tree-Based Landscape Segmentation
In this study, the landscape was segmented with the 20-m reso-

lution data because this scale showed a distinct advantage over the
other DTMs (1, 5, and 10 m) in explaining accumulation and
distribution of the organic layer across the landscape (Table 4). The
landscape segmentation is illustrated in Figure 6 and in Table 5. At
the landscape scale, regression tree analysis resulted in six landscape
units with the topographic variables slope, aspect, and mean curva-
ture classes, which were highly correlated with OLT (P � 0.05)
(Figure 6A). Slope represented the best descriptor of the variability
within OLT. The landscape was initially subdivided into two units
with slope �2.3% and slope �2.3% (Figure 6A). Under slope
conditions �2.3%, aspect was an important variable, but, in con-
trast, mean curvature was a more important variable for areas with
slope �2.3%. Regression tree analysis showed higher OLT in areas
with slopes �2.3% (landscape units A, B, and C) and lower OLT in
areas with slopes �2.3% (landscape units D, E, and F, with mean
depths of 29, 43, and 27 cm, respectively) (Table 5; Figure 6B). CVs

Table 4. Spearman’s rank correlation between OLT and topographic variables for each major aspect class.

Cell size and variable

N NE E NW SE S SW W

rs �rs rs �rs rs �rs rs �rs rs �rs rs �rs rs �rs rs �rs

1 m
Slope �0.14 0.01 �0.07 �0.06 �0.13 0.00 0.01 �0.12 �0.16† 0.03 �0.27a,* 0.14 �0.10 �0.03 �0.08 �0.05
Elevation 0.05 �0.07 0.16 0.04 �0.02 �0.10 0.25a,* 0.13 0.00 �0.12 0.04 �0.08 0.22* 0.10 0.21* 0.09
Curvature �Convex	 �0.21 0.20 �0.17 0.16 �0.12 0.11 0.15 0.14 �0.04 0.03 0.06 0.05 0.12 0.11 �0.04 0.03
Curvature �Concave	 0.10 0.10 �0.07 0.07 0.03 0.03 0.10 0.10 0.04 0.04 �0.06 0.06 0.02 0.02 �0.02 0.02
Plan �Convex	 �0.12 0.11 �0.16 0.15 �0.12 0.11 0.06 0.05 0.02 0.01 0.00 �0.01 0.22a,† 0.21 �0.04 0.03
Plan �Concave	 �0.09 0.03 �0.04 �0.02 �0.01 �0.05 0.09 0.03 �0.03 �0.03 �0.14 0.08 �0.04 �0.02 �0.05 �0.01
Profile �Convex	 0.22b,† 0.22b 0.03 0.03 0.23b,† 0.23 �0.03 0.03 �0.02 0.02 �0.08 0.08 �0.03 0.03 �0.12 0.12
Profile �Concave	 0.08 0.06 0.00 �0.02 0.11 0.09 0.00 �0.02 �0.05 0.03 �0.10 0.08 �0.10 0.08 0.04 0.02

5 m
Slope �0.27* �0.19 �0.40* �0.06 �0.24† �0.22 �0.44* �0.02 �0.51* 0.05 �0.53a,* 0.07 �0.41* �0.05 �0.40* �0.06
Elevation 0.20 0.08 �0.10 �0.02 �0.03 �0.09 0.18† 0.06 0.05 �0.07 0.02 �0.10 0.20* 0.08 0.36a,* 0.24
Curvature �Convex	 �0.23 0.22 �0.08 0.07 0.16 0.15 0.03 0.02 �0.10 0.09 0.02 0.01 0.02 0.01 0.13 0.12
Curvature �Concave	 �0.15 0.07 �0.28 0.20 �0.07 �0.01 0.05 �0.03 �0.03 �0.05 �0.04 �0.04 �0.29a,* 0.21 0.08 0.00
Plan �Convex	 �0.26b,* 0.24b �0.16 0.14 �0.02 0.00 �0.08 0.06 �0.02 0.00 �0.03 0.01 0.03 0.01 �0.01 �0.01
Plan �Concave	 �0.17 0.08 �0.08 �0.01 �0.10 0.01 �0.06 �0.03 �0.05 �0.04 �0.12 0.03 �0.22a,* 0.13 �0.01 �0.08
Profile �Convex	 0.21 0.20 �0.28 0.27 �0.15 0.14 0.06 0.05 0.02 0.01 0.09 0.08 �0.07 0.06 �0.04 0.03
Profile �Concave	 0.00 �0.08 0.10 0.02 0.29 0.21 �0.04 �0.04 0.01 �0.07 �0.01 �0.07 0.20a,* 0.12 0.09 0.01

10 m
Slope �0.38* �0.15 �0.45* �0.08 �0.45* �0.08 �0.45* �0.08 �0.48* �0.05 �0.65a,* 0.12 �0.35* �0.18 �0.54* 0.01
Elevation 0.04 �0.08 0.08 �0.04 0.15 0.03 0.20† 0.08 0.16† 0.04 �0.06 �0.06 0.08 �0.04 0.45a,* 0.33
Curvature �Convex	 �0.33 0.18 0.24 0.09 �0.08 �0.07 �0.16 0.01 �0.12 �0.03 �0.23a,* 0.08 �0.08 �0.07 �0.15† 0.00
Curvature �Concave	 �0.15 0.09 0.24 0.18 0.29 0.23 0.14 0.08 �0.02 �0.04 0.01 �0.05 0.01 �0.05 0.15a,† 0.09
Plan �Convex	 �0.59b,* 0.47b �0.02 �0.10 �0.18 0.06 �0.17 0.05 0.02 �0.10 �0.09 �0.03 �0.13 0.01 �0.08 �0.04
Plan �Concave	 �0.24 0.24 �0.36 0.36 0.17 0.17 �0.06 0.06 0.10 0.10 �0.09 0.09 0.04 0.04 0.13 0.13
Profile �Convex	 0.24 0.09 0.17 0.02 �0.06 �0.09 0.30a,* 0.15 0.10 �0.05 0.22* 0.07 �0.02 �0.13 0.21* 0.06
Profile �Concave	 0.22 0.15 �0.09 0.02 �0.07 0.00 �0.09 0.02 0.03 �0.04 �0.15† 0.08 �0.07 0.00 0.04 �0.03

20 m
Slope �0.41* �0.15 �0.01 �0.55 �0.05 �0.51 �0.35* �0.21 �0.56* 0.00 �0.70a,* 0.14 �0.31* �0.25 �0.56* 0.00
Elevation �0.14 0.02 0.01 �0.11 0.27† 0.15 0.28* 0.16 0.20* 0.08 �0.12† 0.00 0.06 �0.06 0.49a,* 0.37
Curvature �Convex	 0.11 �0.14 �0.24 �0.01 �0.44b 0.19b,* �0.01 �0.24 �0.38a,* 0.13 �0.20* �0.05 �0.11 �0.14 �0.34* 0.09
Curvature �Concave	 0.13 �0.01 �0.43 0.29 0.00 �0.14 0.19 0.05 0.12 �0.02 0.15† 0.01 0.20a,† 0.06 0.10 �0.04
Plan �Convex	 0.07 �0.15 �0.34 0.12 �0.23 0.01 �0.15 �0.07 �0.52a,* 0.30 �0.23* 0.01 �0.21† �0.01 �0.13 �0.09
Plan �Concave	 0.32 0.24 �0.38 0.30 0.05 �0.03 0.02 �0.06 0.02 �0.06 0.11 0.03 0.10 0.02 0.13 0.05
Profile �Convex	 �0.32 0.05 0.11 �0.16 0.28 0.01 0.17 �0.10 0.33a,* 0.06 0.29* 0.02 0.21† �0.06 0.24* �0.03
Profile �Concave	 �0.50b,* 0.34b 0.21 0.05 0.00 �0.16 0.14 �0.02 �0.10 �0.06 �0.19a,* 0.03 �0.04 �0.12 �0.11 �0.05

A positive value of �rs indicates that the associated rs increased with aspect stratification, where as a negative value of �rs indicates a decrease in associated rs. �rs � �rs2� �
�rs1� where rs1 refers to the collective data (in Table 2) and rs2 to individual topographic variable data for a specific class aspect.
a The strongest rs increase for each significant topographic variable under the same cell size with their �rs.
b Significant correlations that were not included in the interpretation because of lower n.
* P � 0.01.
† P � 0.05.
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for each group (Table 5) were lower than that for the collective data
set (CV � 0.56), demonstrating that the landscape segmentation
process markedly reduced the range of variability within each of the
six landscape units.

Areas with Slope �2.3%
Areas with slopes �2.3% were further subdivided on the basis of

slope (�1.8% and �1.8%) and mean curvature (concave and con-
vex), resulting in three landscape units (A, B, and C, with mean
OLTs of 62, 56, and 48 cm, respectively). Field observations indi-
cated that the deposit material type underlying each of the landscape
units A, B, and C was composed of clay (86, 89, and 68%, respec-
tively), till (13, 10, and 29%, respectively), and bedrock (1, 2, and
4%, respectively).

Areas with Slope �2.3%
Under conditions for which slopes were �2.3%, the data were

most effectively split on the basis of slope (�3.2% and �3.2%) and
aspect class (N to S versus SW to NW) into three landscape units (D,
E, and F). Regression tree analysis indicated that under slope con-
ditions �3.2%, OLT was lower in southwest- to northwest-facing
areas (landscape unit D) compared with those having north- to
south-facing slopes (landscape unit E). Landscape units D and F had
the lowest OLT of any units (Table 5). For landscape unit F, the
nine highest values of OLT (up to 78 cm) are indicated as outliers in
Figure 6B. Quantitative evidence from the field observations indi-
cated that these values occurred where higher organic accumulations
were observed on sloping terrain and were found in local depressions
in the underlying bedrock. Indeed, landscape unit F had the second
highest number of sampling points lying on bedrock (15% after
landscape unit D with 57%).

Discussion
Relationships Between OLT and Topographic Variables at
Different DTM Resolutions

Except for elevation, for which the correlation was consistently
weak (rs � 0.12) across all resolutions, correlation strength of top-
ographic variables increased with decreasing resolution. In other
words, lowering resolution caused details (i.e., shorter slopes) to be
lost as resolution decreased and consequently tightened the variabil-
ity range within the topographic variables studied. Of the four res-
olutions that were examined, the 20-m LiDAR-derived DTM
showed the strongest correlations between topographic variables
and OLT. This can be mainly attributed to topographic smoothing
at the landscape scale that results from decreased resolution of
DTMs. This finding was consistent with other studies that have
found that small-scale topographic variation was lost with the use of
a coarser digital elevation model (Potter et al. 1999, Grant 2004,
Seibert et al. 2007, Wu et al. 2008).

Poor correlation between elevation and OLT indicated that ele-
vation is a minor influence on OLT. When the collective data were
used, elevation could not be used to discriminate between areas of
higher and lower organic thicknesses over the entire study area.
However, stratification of the data based on aspect classes revealed
that elevation was positively correlated with OLT for areas having a
west-facing slope, which was consistent with other studies, in which
higher rates of paludification were found on plateaus (Goro-
zhankina 1997, Lavoie et al. 2005).

Not surprisingly, among all of the topographic variables that
were studied, slope was the most important single control on OLT
within the study area. Despite the observation of some strong rela-
tionships for some aspect classes (i.e., areas on south- and southeast-
facing slopes), no major improvement in the strength of correlation

Figure 5. Relationships between selected topographic variables and OLT for areas with different aspects at 20-m resolution. (A) Slope.
(B) Elevation. (C) Mean curvature. (D) Plan curvature. (E) Profile curvature.
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coefficients was achieved with aspect stratification. Overall, it was
apparent that the spatial distribution of OLT in our study area
cannot be explained by simple bivariate relationships between OLT
and individual topographic variables. In addition, the correlation
analysis suggested a complex interrelationship between OLT and
topographic variables, and, therefore, the use of a method that could
split the study area into more homogeneous spatial units was
justified.

Landscape Segmentation
Regression tree segmentation produced some landscape units

with high variability that could be explained by local scale features.
For example, depressions in the rock were locally observed on slop-

ing terrain within landscape unit F. These topographic depressions,
which were filled mostly with fibric and mesic materials, are scat-
tered across the landscape and were probably created by episodic
freeze-thaw events in the bedrock or by glacial erosion or may simply
represent the surface roughness of the bedrock (Laamrani et al.
2013). This finding is consistent with earlier studies (Payette 2001,
Simard et al. 2009), which found that paludification can occur on
sloping well-drained terrain (up to 16%�20%) directly on bedrock
where the humic material is almost inexistent and the fibric material
is dominant (about 97%) (Larocque et al. 2003).

In addition to confirming the importance of slope effects on
OLT at the landscape, which had been reported previously for the
surface layers within the Clay Belt (i.e., Giroux et al. 2001, Simard
et al. 2009), this study quantified the threshold (1.8%) at which
slope could be used to discriminate units with the deepest organic
layers (landscape unit A). Slope �1.8% could be used as a predictor
for zones of soil saturation where a thick organic layer often
accumulates. Furthermore, a slope threshold of 3.2% seemed to
represent a cutpoint for discriminating between paludified and non-
paludified areas. This study illustrated that even very small differ-
ences in slope, on the order of 1.4%, can significantly contribute to
the estimation of paludified landscapes. This finding is consistent
with those of previous researchers (Giroux et al. 2001, Simard et al.
2009, Lavoie et al. 2005), who calculated in the field differences in
slope on the order of 0%�7% within the Clay Belt where slope is
frequently less than 0.1% (Lavoie et al. 2007).

Contrary to our expectation, this study showed that overall, areas
with slopes �2.3% and �3.2% exposed to the south and west
(landscape unit E) were more prone to organic layer accumulation
than those exposed to the north and east (landscape D). The higher
OLT on west- and south-facing slopes may be tentatively ex-
plained by higher sphagnum moss growth stimulated by more radi-
ation from the sun combined with higher moisture storage capacity.
On the other hand, on areas with slopes exposed to the north and
east (landscape unit D), dry soil conditions seems to prevail as a
result of water movement causing a decrease in OLT. Seibert et al.
(2007) found that the influence of aspect is largest at latitude
40�60°, which corresponds to the location of our investigated
region.

Beside slope and aspect, mean curvature had the greatest influ-
ence on organic layer accumulation and contributed to the separa-
tion of units with varying OLT. Concave-mean curvature (land-
scape unit B) can be an indicator of areas of soil saturation, and
organic layers often accumulate in lowlands. On the other hand,
plan curvature and profile curvature variables were not selected by
the regression tree analysis, and their effect was probably masked by
the large number of almost flat areas on the landscape, because these
two topographic variables represent flow dynamics across the surface
(Table 1).

Despite various significant trends, the data exhibited obvious
variability (expressed as data scattering). This kind of scattering is
expected when one is working with a large data set that covers a
range of different site conditions (Seibert et al. 2007). Another issue
when one is working with large data sets is that even weak correla-
tions are often statistically significant. In contrast, because of the
large variability in site conditions, high correlation coefficients are
not expected, and the correlations found may still have a physical
meaning.

Figure 6. (A) Regression tree hierarchical landscape unit segmen-
tation based on 20-m DTM. Each box corresponds to a final land-
scape unit (A�F), with the topographic variable on which the unit
was subdivided listed and the range (value or identifier) for the
topographic variable by which the unit was defined listed above.
(B) Box plots of the OLT variability within each final landscape unit.
A description of each component of the box and whiskers plot is
given in Figure 3.

Table 5. Summary statistics for OLT by landscape unit for the
study area.

Landscape
units n Mean (cm) SD (cm) CV Median (cm)

A 543 62 25 0.40 60
B 122 56 25 0.45 55
C 140 48 21 0.44 46
D 117 29 14 0.48 25
E 158 43 16 0.37 41
F 520 27 11 0.42 25

The landscape units correspond to those obtained by regression tree analysis and
depicted in Figure 6. n represents number of sites.
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Management Implications and Future Research
The results of this study are important for landscape manage-

ment for several reasons. (1) Understanding how surface topography
is related to OLT is an important first step in predicting and map-
ping productivity across landscapes. This information will aid forest
managers in predicting potential zones of saturation where organic
layer often accumulates and will help them to adopt the appropriate
forest management practices (i.e., field preparations, treatments,
and replanting). For example, slope can be used to better manage
forest resources where high soil moisture limits productivity. (2) To
maintain or improve forest productivity in the Clay Belt region,
management strategies should focus on sloping sites (i.e.,
�2.3%) rather than on almost flat sites (�1.8%). The latter are
associated with a deep organic layer that is often not suitable for tree
plantations (Lafleur et al. 2010) and provide few ecological or eco-
nomic motives to manage soils with low slopes (Simard et al. 2009).
(3) We expect that the use of LiDAR-derived topographic variables
as sources of information in environmental management will in-
crease in the future, especially as the availability of precise digital
data increases. The potential of LiDAR data to provide spatial detail
for planning and the optimization of forest management activities in
boreal forests has been demonstrated in a previous study (Woods et
al. 2011). (4) This study is part of a larger project that deals with the
effects of environmental variables and forest harvesting on paludifi-
cation and was conducted before implementation of recent forest
management. Therefore, results from this study could be used to
determine the long-term impact of forest management practices
(i.e., forest harvesting, field preparation treatments, and replanting)
on the original organic layer proprieties.

Our segmentation of the landscape illustrated that areas with

higher slopes were associated with thinner organic layers, as did that
of Simard et al. (2009), who found that rates of organic layer accu-
mulation at the plot scale were highest on flatter sites and dimin-
ished with increasing slope on the Clay Belt. This result supported
our hypothesis that topography has a significant influence on the
spatial distribution of OLT and that these relationships can be used
for partitioning the landscape and, therefore, can help in future
planning of landscape management.

The combination of topographic information (from remotely
sensed LiDAR data) with field measurement has the potential to be
useful for defining both promising and vulnerable areas for forest
management. For instance, landscape units A and B seem to repre-
sent areas with conditions that may be less favorable for tree growth
because the presence of a thick organic layer combined with
wet conditions on flat terrain is expected to limit the use of equip-
ment for mechanical site preparation and harvesting within the
highly paludified areas (Lavoie et al. 2007). This was supported by
ongoing studies that deal with the effect of OLT and slope on forest
productivity (A. Laamrani and N. Fenton, Université du Québec en
Abitibi-Témiscamingue, unpubl. observ., 2013), which found that
on average, landscape units A and B showed the lowest stand vol-
umes (estimated for trees with dbh �9 cm) with 104 and 125
m3/ha, respectively. On the other hand, landscape units D and F
with estimated stand volumes of 204 and 207 m3/ha, respectively,
seem to represent very attractive conditions for forest managers.

Once the regression trees were completed, they provided a set of
decision rules that defined the range of conditions, i.e., values of the
predictor variables, which are best used to predict each landscape
unit. We used these rules to create a thematic map of the spatial

Figure 7. Thematic map showing the spatial distribution of the six resulting landscape units (A�F) across the study area. This map was
produced using the regression tree rules based on the combination of slope, aspect, and mean curvature.
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distribution of the resulting landscape units across the study area
(Figure 7). When forest inventory maps from the MRNQ were
superimposed on the regression tree-derived thematic map using
ArcGIS 10.0 (ESRI 2011), there was good statistical matching
(71%; validating data set n � 97) (Figure 7) between the landscape
unit distribution and forest management area status (suitable or
not). Thus, regression tree and the derived thematic map might be
useful for identifying and predicting spatial differences in terms of
OLT on the landscape, which would be of interest to facilitate forest
management in areas of limited data availability within the Clay Belt
region. In addition, the regression tree breakdown of the data into
the six landscape units was statistically and visually related to the
distribution of three landscape topographic variables (slope aspect
and mean curvature; maps of each of these variables are not shown in
this study).

Finally, our study illustrated not only the potential of some to-
pography variables to explain the occurrence of highly paludified
areas but also the need for further studies. Our future work will focus
on the importance of mineral soil topography on the spatial distri-
bution of the organic layer over the same landscape, especially if
topographic variables could be used to discriminate between the two
common types of paludification (successional and edaphic) (for an
overview of paludification types, see Fenton et al. 2009).

Conclusions
This study demonstrated that the relationship between OLT and

most individual topographic variables (obtained from LiDAR-
derived DTMs) is consistently weak. Slope was found to have a
significant role in the spatial distribution of OLT at the landscape
scale. A regression tree analysis partitioned landscape data into six
statistically different landscape units. Further, the mean OLT of
each landscape unit was either significantly different from that of all
other units or the lack of differences could be explained by mean-
ingful field observations. Landscape segmentation served to discrim-
inate between areas of greater and lesser OLT based on slope, aspect,
and mean curvature variables. Indeed, higher OLT was confined to
gentle sloping areas (�1.8%). For areas with relatively higher slopes
(�2.3% and �3.2%), organic layers were also found to be deeper
for south-facing slopes than north-facing slopes. A thematic produc-
tive map of the distribution of the resulting six landscape unit was
generated using the regression tree based on the combination of
slope, aspect, and mean curvature. This thematic map was useful for
recognizing both vulnerable and promising areas (overall matching
of 71%) for forest management. To summarize, relationships be-
tween OLT and topographic variables at the landscape scale con-
firmed the importance of topography on OLT, which was previ-
ously noted at the plot scale within the Clay Belt. Finally, the most
accurate results were obtained from the 10- and 20-m resolution
LiDAR-derived data rather than from that of higher resolution (1
and 5 m).
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