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Mineral soil topography is difficult to describe in boreal regions because of the thick overlying organic layer de-
spite its presumed importance in determining where and at what rate an organic layer will accumulate
(paludification). The overall purpose of this study was to examine the relationship between mineral soil topog-
raphy and OLT at the landscape scale. More specifically, these relationships can be used to map the distribution
and spatial variability of paludification across the landscape, thereby exploring the potential to discriminate be-
tween the two commonly known paludification types (permanent and reversible). Seven topographic variables
(elevation, slope, aspect,mean curvature, plan curvature, profile curvature and topographic wetness index)were
generated from a digital elevation model that we developed for the mineral soil surface (MS-DEM). OLT data
were collected from field measurements across the landscape by manual probing and values varied from 5 to
150 cm. The MS-DEM was generated by subtracting OLT field values from the corresponding LiDAR-derived el-
evation values. Most correlations between OLT and individual predictor variables were weak and illustrated
that OLT and its landscape-scale distribution cannot be explained by simple bivariate relationships. Consequent-
ly, two regression tree-based models were developed using: (1) only the seven mineral soil topographic vari-
ables, and (2) all predictor variables (mineral soil topography and surficial deposits). Mineral soil slope was
the most important variable for both models and corresponded to the first level of splitting the dataset into ho-
mogenous landscape units in terms of organic layer thickness. Surficial deposit, topographicwetness index (TWI)
and aspect were also related to OLT and proved to be contributing to the development of the two models.
Model 1 explained 0.34 of the OLT variability and offer simple models with few landscape units that are easy to
interpret. Model 1 splitting rules allowed the combination of different maps (slope, TWI and aspect) for produc-
ing a landscape units map, on which OLT was determined and related to increasing paludification categories. A
good overall accuracy of 74%was achieved for this map. Model 2 was the best model in terms of estimate quality
(R2adj = 0.52). Both models were successful in discriminating highly paludified landscape units. Except for one
landscapeunit thatwas assigned to permanent paludification type, bothmodelswereunable to further subdivide
more landscape units into reversible and permanent paludification, suggesting that both of these types interact
within the same landscape unit. This study demonstrated that the combination of topographic information
from remotely sensed LiDAR data and field OLT measurement data has the potential to be useful for defining
both promising and vulnerable areas for forest management.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Paludification is a natural process where organic material accumu-
lates on the ground surface over time, resulting in higher soil moisture
levels and elevated water tables (Crawford et al., 2003; Vygodskaya
ani), Osvaldo.Valeria@uqat.ca
eron@uqat.ca (Y. Bergeron),
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et al., 2007). These conditions alter dynamic succession and favour the
invasion of Sphagnummoss species (Fenton and Bergeron, 2006, 2007;
Fenton et al., 2005), which can lead to the development of forested
peatlands and substantial decreases in forest productivity (Simard
et al., 2007, 2009). While essentially a regional process, many parts of
the world, including interior Alaska, the western Siberian plain, and
the Hudson Bay–James Bay Lowlands of Canada, are prone to
paludification. In the black spruce forests of the Clay Belt, a region in
the southern portion of the Hudson Bay–James Bay Lowlands
(Fig. 1A), time-since-last fire and ground surface topography have
been reported as the two main factors that cause paludification. Conse-
quently, two types of paludification can be identified: permanent and
reversible, respectively (Fenton et al., 2009; Lavoie et al., 2007; Simard
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Fig. 1. Study areawithin the Clay Belt of Ontario and Quebec (A). Sampling locations along transects within four sectors (1, 2, 3, and 4) and delimitation of themineral soil digital elevation
model area (B). Landscape map of the study area showing the field organic layer thickness sampling points locations (C). The analysed dataset (n = 653) was formed by summing the
original dataset along the central transects (n = 568) and independent validation datasets along the same transects (n = 85).
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et al., 2007).Within the landscape, permanent paludification dominates
in natural depressions, which havewetter soil conditions that favour or-
ganic layer build-up. Reversible paludification occurs on flat or sloping
terrain, where a feather moss-dominated bryophyte layer is replaced
over time by Sphagnum species, starting about 100 years following
fire (Fenton and Bergeron, 2006; Simard et al., 2007).

Numerous studies have been conducted to characterise the influ-
ence of topography on the accumulation and spatial variability of the or-
ganic layer across the Clay Belt (i.e., Giroux et al., 2001; Lavoie et al.,
2005, 2007; Simard et al., 2009); however, these studies have largely
been restricted to investigations of the ground surface topography at
the plot-scale. In a recent extensive study at the landscape scale,
Laamrani et al. (2013b) found weak correlations between organic
layer thickness (OLT) and topographic surface variables, suggesting
that OLT may be controlled by other factors, such as themineral soil to-
pography, i.e., the contours of the surface beneath the organic layer.

Mineral soil topography affects the accumulation of organic layer
mainly through its control of water movement at the landscape scale
(Emili et al., 2006). This topography has been difficult to describe in bo-
real regions because it ismaskedby the thick overlying organicmaterial.
Despite the presumed importance of mineral soil topography in deter-
mining where and to what degree paludification will occur in the Clay
Belt, no attempt has been made in this region until now to measure
and link mineral soil topography to OLT and to the two paludification
types (permanent and reversible) at the landscape scale. In this context,
the overall purpose of this study was to examine the relationship be-
tween mineral soil topography and OLT at the landscape scale. More
specifically, these relationships can be used to map the distribution
and spatial variability of paludification across the landscape, thereby ex-
ploring the potential to discriminate between permanent and reversible
paludification. To do so, we correlated field organic layermeasurements
that were obtained by manual probing with topographic variables that
were derived from a digital elevationmodel (DEM),whichwas generat-
ed at themineral soil surface. Themineral soil DEMwas generated using
LiDAR (Light Detection And Ranging) data together with field OLT
measurements.

2. Methods and materials

2.1. Study area

The study was located in the James Bay Lowlands physiographic re-
gion of Quebec, Canada (Fig. 1A). It was centred (49°27′30″ N, 78°31′5″
W) on a 72 ha site within the Clay Belt region, which is dominated by
black spruce (Picea mariana [Mill.] BSP) forest (Fig. 1B). The forest
floor was composed of Sphagnum spp., feather mosses (principally
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Pleurozium schreberi (Brid.) Mitten), and shrubs, (mainly dwarf erica-
ceous species), with variable coverage across the landscape. This region
has low topographic relief, as the Canadian Shield was overlain by ex-
tensive clay deposits by pro-glacial Lakes Barlow–Ojibway (Veillette,
1994). Within the study area, ground surface slope ranged from 0.3 to
15.7%; about 60% of the area has a slope greater than 2%. Elevation
ranged from 290 m to 314 m above sea level (mean = 303 m).

OLT varied from 5 to 150 cm across the landscape. The underlying
mineral soil is variable, ranging in composition from clay to till. The
thickness of the mineral layer over bedrock is variable across the land-
scape, ranging from 1 m (Laamrani et al., 2013a) to 60 m (Veillette
et al., 2005). A detailed description of mineral deposits present in the
study area has been provided in Veillette et al. (2005). The study area
is underlain by bedrock, which is a complex mixture of Precambrian
granitic rock types that occasionally appear at the ground surface and
which form scattered gentle hills across the landscape. Many streams
run locally in a southwestern direction through the area, which pro-
duced a relatively complex topographic pattern within the landscape
(Fig. 1C). At the La Sarre weather station, located at about 85 km south-
west of the site, mean annual temperature is 0.7 °C and total annual
precipitation is 890 mm (Environment Canada, 2013).

2.2. Sampling design and field data collection

The objectives of this study were addressed by establishing thirteen
sub-parallel transects through forest stands within the study area
(Fig. 1B). The thirteen transects, totalling 15 km in length, were
established across four different sectors (1, 2, 3, and 4; Fig. 1B), which
covered a variety of sites that differed in OLT, degree of paludification,
drainage, vegetation cover, and substrate moisture conditions. This
transect configuration took a long time to complete but provided an
extra dimension that was important for interpreting themineral soil to-
pography. This also permitted us to generate a spatially continuous
cross-sectional profile of the mineral soil topography. A minimum dis-
tance of 20 m was maintained between transects in order to optimise
lateral interpolation between transects.

Field organic layer measurements (response variable) were collect-
ed at 10 m intervals along each transect by probing with a manual
auger (n = 1550). At each sampling point, the auger bored through
the organic layer until the mineral soil was encountered. The auger
was then removed and themarked depth tomineral soil was accurately
measured. The thickness of the organic material was taken as the dis-
tance between the organic layer surface and the mineral soil interface.
In nearly all cases, the transition between organic layer and mineral
soil was clearly marked by an obvious change in colour and texture.
An additional 172 OLT measurements were also collected over the
study area and used for validation purposes (Fig. 1C). These 172 sam-
pling points were randomly disturbed between transects (n = 85)
and along the central transect (n = 87). Each organic layer measure-
ment along the central transect was located halfway between two sam-
pling points established at 10 m intervals. Two locations along the
central transects had to be excluded, as it was technically impossible
to measure OLT because they were located in deep depressions; conse-
quently, the exclusion of two sites, which should not affect the results,
reduced the validation dataset to 170 sampling points.

At every sampling point, the presence of each organic horizon and
the nature of the underlying mineral material (clay, till, bedrock) were
recorded in the field. The spatial distribution, stratigraphy and origin
of the surficial deposits were highly variable across the study area. It
should be mentioned that surficial deposits nomenclature (clay, till,
bedrock) used in this study referred to the mineral material underlying
the organic layer. In the present study, “bedrock” referred to unconsol-
idated material (also called regolith) overlying solid rock. To correlate
each type of surficial deposits (clay, till, bedrock) with organic layer
thickness, surficial deposits were considered as a factor, taking nominal
values of 0 for till, 1 for clay, and 2 for bedrock.
2.3. Mineral soil topography

2.3.1. Generation of mineral soil digital elevation model
Prior to the creation of a mineral soil digital elevation model (MS-

DEM), a digital terrain model (DTM) was generated based on LiDAR
data (with±0.065 m vertical accuracy and 15-m resolution). The latter
is becoming one of themost effective and reliable remote sensing tech-
nologies for assessing topography at both the plot- and landscape-scales
in boreal forested environments (i.e., Laamrani et al., 2013b; Southee
et al., 2012; Webster et al., 2011; Work et al., 2011). Laamrani et al.
(2013b) and Vepakomma et al. (2011) described in detail the process-
ing and creation of the LiDAR-derived DTM.

Positions of all field sampling measurements (along transects and
plots) were recorded using a Trimble GeoXT handheld GPS to provide
50 cm-level positioning accuracy and to allow direct comparison with
the DTM. The field OLT dataset was then superimposed upon the DTM
and surface topography elevationswere extracted for each sampling lo-
cation. By subtracting the OLT values from the corresponding DTM
values at each field point, a new dataset of mineral soil elevations was
obtained for the study area. This new dataset was first used to create a
digital representation of the three-dimensional surface using (TIN) pro-
cedure (Triangulated Irregular Networks; Peucker et al., 1978). A digital
elevation of the mineral soil surface model was then created by
converting the TIN to a raster format with an optimal resolution of
15 m (cell size). The resulting mineral soil digital elevation model
(MS-DEM) was validated with a set of field-measured points
(n = 170; 85 sampling points along the central transects and another
85 points between transects; Fig. 1C). This raster validation dataset
was not part of the original dataset (n = 1550) that was used to pro-
duce the MS-DEM (Fig. 1C).

2.3.2. Topographic variable calculation
Mineral soil surface topographic variables (predictor variables),

which were derived from the MS-DEM, included elevation, slope, as-
pect, mean curvature, plan curvature, profile curvature, and a com-
pound topographic wetness index. A detailed description of each of
these topographic variables is provided in Table 1. The chosen topo-
graphic variablesmay aid spatial estimation of paludified areas, because
the topography is presumed to have a great influence on organic layer
accumulation whereby topographic lows/depressions would be associ-
ated with an accumulation of organic matter and a concomitant rise in
the water table. The topographic wetness index (TWI) has been found
to play a significant role in estimating different soil features that are re-
lated to paludified areas such as local soil moisture (Blyth et al., 2004;
Güntner et al., 2004), horizon depth (Gessler et al., 1995; Moore et al.,
1993; Seibert et al., 2007), vascular plant species richness in boreal for-
ests (Sørensen et al., 2006; Zinko et al., 2005), and the spatial distribu-
tion of groundwater flow along forest–peatland complexes within the
boreal forest (Emili et al., 2006).

Values of each of the topographic variables were calculated for each
cell of the MS-DEM using ArcGIS 10 (ESRI, 2011). Conceptually, the to-
pographic variable tool (i.e., slope, aspect) fits a plane to the z-values
of a 3 × 3 cell neighbourhood around the central cell. When a cell loca-
tionwithin this nine-cell neighbourhoodwith a “NoData” z-value, the z-
value of the central cell was assigned to the location, after which the
topographic variable was then computed. At the edge of the MS-DEM
raster, at least three cells (outside the raster's extent) contained NoData
as their z-values. For mineral soil slope calculation, for instance, this
problem resulted in a flattening of the 3 × 3 plane fitted to these edge
cells, which leads to a decrease in the slope (ESRI, 2011), and thus to a
biased value of this topographic variable. To avoid including biased
values from cells next to the physical edge of the MS-DEM raster, OLT
measurement corresponding to cells that had at least one NoData cell
as a neighbourwas excluded from the analysed dataset. These excluded
data were located mainly along transects at the edge of the MS-DEM
raster (Fig. 1C). In addition, simple correlations between OLT and the



Table 1
Description of the topographic variables that were derived from the mineral soil digital elevation model (MS-DEM).

Topographic variables Description

Elevation Height above sea-level of a particularmineral soil location.Mineral soil z-valuewas calculated for each sampling location as thedifference between the LiDAR
DTM and the organic layer thickness at that location.

Slope Calculated for each grid cell as themaximum rate of change in z-value from that cell to its neighbours. Slope affects the overall rate ofmovement downslope.
Aspect Direction of themaximumrate of change in the z-value fromeach cell to its neighbours. Aspect defines thedirection offlowandwas classified into fourmajor

classes, viz., North, East, South and West.
Mean curvature A general measure of the convexity of the landscape, where sinks and valleys are considered concave (negative values), and peaks and highs are considered

convex (positive values).
Plan curvature Curvature of the surface perpendicular to the slope direction. (+) values indicate that water flow would diverge (convex surface), whereas (−) values

indicate that water flow would converge (concave surface).
Profile curvature Curvature of the surface in the direction of slope. (+) values indicate that water flowwould decelerate (concave surface), whereas a (−) values will indicate

that water flow would accelerate (convex surface).
Topographic wetness
index

TWI = ln (As/tan β) (Moore et al., 1993). As is the local upslope contributing area and β is the local slope. The higher the value of the TWI in a cell, the higher
the soil moisture and water accumulation that can be found on it.
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topographic variables showed that when data from cells next to the
physical edge of the MS-DEM raster were excluded, relationships were
improved for most topographic variables. For instance, TWI, slope and
elevation correlations were improved by 17%, 9% and 4%, respectively;
this rationalises our use of a reduced dataset (n = 653) for subsequent
analyses, rather than the entire dataset, whichwas used to generate the
MS-DEM (n = 1550). The reduced dataset is referred to in this study as
the “analysed dataset” and consisted of the sumof central transect sam-
pling points (n = 568) and the validation dataset sampling points
along the central transect (n = 85), for a total of 653 sampling points.

2.4. Relating topography variables and OLT

To investigate relationships between predictor variables (topo-
graphic variables and surficial deposits) and the response variable
(field-measured organic layer thickness), we used Spearman's rank cor-
relation and regression tree modelling, which are both non-parametric
methods. Spearman rank correlation (rs) was used instead of the usual
parametric Pearson product–moment correlation. In the latter variables
are presumed to have a linear relationship, which was not the case of
the entire dataset used in this study. For these reasons, no attempt
was made to explore the relationships between predictor and response
variables using linear mixed-effects models.

Regression trees are well-suited to the analysis of our datasets be-
cause of their (i) capability in modelling both complex and non-linear
relationships (Greve et al., 2012a; Rothwell et al., 2008) between covar-
iates and response variables, which can be easily interpreted and
discussed (Bou Kheir et al., 2010); (ii) ability of handling both categor-
ical (i.e., surficial deposits) and quantitative (i.e., elevation and slope)
data (Greve et al., 2012b; Johnson et al., 2009); further, (iii) recursive
partitioning of the dataset into more homogeneous groups allows the
identification of potential relationships between the response variable
(in our case, organic layer thickness) and the environmental predictors,
while also identifying interactions among these latter independent var-
iables (Rothwell et al., 2008).

In the present study, regression trees were used to split the land-
scape OLT data into different homogeneous spatial units (also known
as terminal nodes). In this study, the terminal nodes were named as
“landscape units” that refer to relatively homogeneous areas in term
of OLT distribution. Splits or rules defining how the data were to be
partitioned were selected based on a significance test of independence
between covariates and the response variable. A split was established
when the P-value was smaller than α = 0.05. In other words, the split
was established when the global null hypothesis of independence be-
tween the response variable and any of the predictors could not be
rejected at α = 0.05 (Hothorn et al., 2006). Unlike other decision tree
methods (e.g., CARTs), therewas no need for the regression treemodel-
ling approach used in this study for using post hoc pruning to prevent
overfitting since P-values were used as the stopping criterion (Everitt
and Hothorn, 2009).
In this study, individual predictor variables that were significantly
correlated with organic layer (Table 2) and surficial deposits were
used to develop two regression tree-based models. Model 1 was devel-
oped using only the mineral soil topographic variables (slope, aspect,
mean curvature, plan curvature, profile curvature, and TWI) that had
been directly derived from the MS-DEM. Model 2 was developed
using all of the predictor variables (mineral soil topography and surficial
deposits). Once the regression trees were completed, they provided a
set of decision rules that defined the range of conditions, i.e., values of
the predictor variables, which are best used to predict each landscape
unit. Predictive maps of OLT could then be created through the applica-
tion of the subsequent splitting rules using ArcGIS 10.0 (ESRI, 2011).
Mean values of OLT in the resulting landscape units were then used to
classify them into one of four categories of increasing paludification:
null (0–25 cm); low (26–40 cm); moderate (41–60 cm); and high
(N60 cm). This classification scheme was inspired by previous studies
from the same region (Beaudoin et al. unpublished results; Laamrani
et al., 2013b; Simard et al., 2009). The resulting predictive paludification
categories were verified against OLT fieldmeasurements (n = 85) using
datasets that were randomly selected between the transects sampling
locations (Fig. 1C) and were not used in regression tree development.
The validation procedure, of the resultingmap and paludification catego-
ries, was based on conventional confusionmatrix procedure, using over-
all accuracy and producer accuracy following Congalton (1991).

Assumptions regarding the lack of multicollinearity (Variance infla-
tion factors), normality of the data (Shapiro–Wilk test), and equal error
variance (homoscedasticity, Levene's test) of the regression models
were satisfied. Significance was declared at a level of α = 0.05, with
all statistical analyses were performed in R (R Development Core
Team, 2011). Regression trees were realised using the ctree function in
the party package (Hothorn et al., 2006).
3. Results

3.1. Importance of individual predictor variables

Analyses revealed that among all of the mineral soil surface topo-
graphic variables, the highest correlations with OLT were exhibited by
slope (rs = −0.54, P b 0.001) and TWI (rs = 0.40, P b 0.001). When
the data were stratified according to aspect, these coefficients were
even higher, especially for south-facing areas (Slope, rs = −0.66,
P b 0.001; TWI, rs = 0.56, P b 0.001; Table 2 and Fig. 2). Elevation had
a weak relationship with OLT measurements (rs = 0.15, P b 0.001),
and shallow and thick organic layers occurred at both high and low el-
evations in the study area (Fig. 2). When stratified by aspect, the corre-
lation between elevation and OLT was only significant for west-facing
sites (rs = 0.36, P b 0.001). The positive relationship between elevation
and OLT could be attributable to thick organic layers accumulating over
mineral soil on plateaus (flat areas at higher elevation). Because of this



Table 2
Relationships between organic layer thickness and topographic variables, where the latter values were extracted from the mineral soil digital elevation model (MS-DEM).

Topographic variables All dataa rs
b rs

c

Min Mean Max SD rs North East South West Till Clay Bedrock

Elevation 290 303 314 5 0.15** 0.04 0.04 0.06 0.36** 0.22* −0.07** −0.33*
Slope 0.2 2.9 14.7 1.9 −0.54** −0.20 −0.27† −0.66** −0.44** −0.15* −0.34** 0.03
Mean curvature −1.7 0.02 2.4 0.4 0.01 0.01 0.08 0.06 −0.07 −0.10 0.03 −0.10
Plan curvature −0.7 0.01 1.4 0.2 0.02 −0.05 0.01 0.03 0.02 −0.07 0.04 −0.07
Profile curvature −1 −0.01 1.6 0.2 −0.03 0.00 −0.13 −0.08 0.08 −0.11 −0.03 0.08
TWI 6 8 11 1 0.40** 0.23 0.34* 0.56** 0.11 0.26** 0.13† 0.38*

**, * and † statistically significant at P b 0.001, b0.01 and b 0.05, respectively. rs refers to Spearman's rank correlation coefficient.
a Analysed dataset: n = 653.
b Dataset stratified by aspect with n [North] = 51; n [East] = 64; n [South] = 281; and n [West] = 257.
c Dataset stratified by surficial deposit types with n[Till] = 236; n[Clay] = 363; and n[Bedrock] = 54.
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local pattern and the narrow range of elevations (290–314 m) over the
study area, we chose to exclude elevation from subsequent analyses.

All curvature variables (mean, plan and profile) were not correlated
to field measurements of OLT (Table 1), however these correlations
were significantwhenwe split each of the surface curvature topograph-
ic variables into two classes, viz., concave and convex (Fig. 3). Although
the correlations were not strong (rs ≤ 0.26), overall OLT tended to in-
crease with concavity.
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calculated for the entire dataset. Of all the topographic variables that
were examined, only TWI was significantly correlated with the three
types of surficial deposits (Table 2). Correlations were weak but signifi-
cant between OLT and clay- (rs = −0.34, P b 0.001, n = 363) and till-
slope (rs = −0.15, P b 0.001, n = 236), whereas the organic layer
thickness–bedrock slope correlation did not significantly differ from
zero (rs = 0.03, P = 0.82, n = 54; Table 2). A scatter plot of these rela-
tionships showed that deep organic layers (mean = 64 cm) were
largely confined to clayeymineral soil, whereas shallower organic layers
(mean = 25 cm) were typically located on till (Fig. 4). TWI was corre-
lated with the presence of clay (rs = 0.13, P b 0.05), till (rs = 0.26,
P b 0.001) and bedrock parent materials (rs = 0.38, P b 0.01). Higher
values of TWI (≥9) aremainly associatedwith areas having clayeymin-
eral soils (Fig. 4). Stratification of thewhole dataset by surficial deposits
slightly reduced OLT variability within the clay, till and bedrock. Coeffi-
cients of variation are 0.42, 0.40, and 0.30, respectively, but stratification
was less successful in improving correlation coefficients between
individual topographic variables and organic layer thickness. In fact,
OLT distribution at the landscape scale could obviously not be explained
by simple bivariate relationships between OLT and individual predictor
variables. In addition, the higher coefficient of variation for the whole
OLT dataset (CV = 0.58) suggested a strong interaction between the
different predictor variables and the spatial distribution of organic
layer thickness. To reduce this variability in thewhole dataset, a quanti-
tative subdivision of the landscape into new datasets covering smaller
and more homogeneous areas was undertaken.

3.2. Regression tree-based model evaluations

Results for the regression tree-based models that we developed
using only mineral soil topographic variables (Model 1) and all the pre-
dictor variables (mineral soil topography and surficial deposits; Model
2) are illustrated in Table 3 and Figs. 5 and 7. Table 3 summarises the
statistics obtained during model building and the regression tree
criteria used in predicting OLT for regression tree-based models 1 and
2. Each of the 653 sampling locations were assigned to one of the
resulting landscape units (A to F for model 1; A to J for model 2). In
both models, the predictor variables that were used to generate the
splits were mineral soil slope, surficial deposits, TWI and aspect. These
four variables alone were important in predicting OLT over the land-
scape (Figs. 5, 7 and Table 3). Mineral soil curvature variables (mean
curvature, plan curvature and profile curvature) were not found to con-
tribute to the development of either regression tree-based model, sug-
gesting that they did not play a role in controlling OLT at the
landscape scale.

3.2.1. Regression tree-based model 1
Model 1, based on topographic variables only, resulted in six land-

scape units and had a prediction quality of R2adj = 0.34, r = 0.58 and
RMSE = 23 (Table 3). In model 1, the first node at which the entire
dataset was initially subdivided into two groups, was based on slope
≤2% versus slope N2%. This resulted in areas of higher and lower organic
layer thickness, respectively. Areas with slopes ≤2% were further
subdivided at a second node into two landscape units (A and B, with
mean organic layer depths of 43 cm and 68 cm, respectively), based
on a TWI threshold value of 7 (Table 3). Within areas with slopes
N3.5%, organic layers were deeper on north- and east-facing slopes
(landscape unit D) compared to south- and west-facing areas (land-
scape units E and F) (Fig. 5, Table 3). Moderate OLT were found for
areas with slopes N2% and ≤3.5% (Landscape unit C; mean
OLT = 41 cm). These results supported our hypothesis that mineral
soil topography has a significant influence on the spatial distribution
of OLT. The predictive thematic map of landscape units (Fig. 6), indicat-
ed that 46.8% (33.6 ha) of the investigated area correspond to the high
paludification category (landscape unit B), 43.4% (31.2 ha) to the mod-
erate ones (landscape units A, C and D), and 9.8% (5.7 ha) to the non-
paludified category (landscape units E and F) (Table 4). The confusion
matrix between the measured paludification categories and the
modelled ones showed a good overall accuracy of 74% of the sites
(Table 4). The highly paludified category had the highest producer's ac-
curacy (83%) followed by moderate and null categories with 74% and
57%, respectively (Table 4).

3.2.2. Regression tree-based model 2
Model 2, based on all predictor variables, showed a substantial im-

provement in prediction quality (R2adj = 0.52, r = 0.72 and
RMSE = 19; Table 3). The number of resulting landscape units was
higher compared to model 1 and, consequently, some landscape units
had few observations (i.e., Landscape units C and H in Table 3 and
Fig. 7). Thehighest OLTwas foundon clayey surficial depositwith slopes
between 2 and 3.7% (landscape units B and G with mean organic layer
thicknesses of 71 cm and 53 cm, respectively), whereas shallow OLT
(non-paludified) was associated with south- and west-facing areas
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Fig. 4. Relationship between organic layer thickness and selected topographic variables for the three different surficial deposits (Till, Clay and Bedrock).

Table 3
Regression tree-based models that were used in this study to explain organic layer thickness and their statistics.

Model Terminal landscape unit splits n Mean (cm) r R2adj RMSE

Model 1 0.58 0.34 23
A) Slope ≤ [2%]**, TWI ≤ [7]* 32 43
B) Slope ≤ [2%]**, TWI N [7]* 234 68
C) Slope N [2%]**, Slope ≤ [3.5%]** 240 41
D) Slope N [3.5%]**, Aspect [N&E]** 46 41
E) Slope N [3.5%]**, Aspect [S] † 78 21
F) Slope N [3.5%]**, Aspect [W] † 23 25

Model 2 0.72 0.52 19
A) Slope ≤ [2%]**, SurfDep [Till]** 39 26
B) Slope ≤ [2%]**, SurfDep [Clay]* 220 71
C) Slope ≤ [2%]**, SurfDep [Bedrock]* 7 37
D) Slope N [2%]**, SurfDep [Till]**, TWI ≤ [7]**, Aspect [N&E]** 18 35
E) Slope N [2%]**, SurfDep [Till]**, TWI ≤ [7]**, Aspect [S&W]** 102 20
F) Slope N [2%]**, SurfDep [Till]**, TWI N [7]** 77 28
G) Slope N [2%]**, SurfDep [Clay]**, Slope ≤ [3.7%]† 130 53
H) Slope N [2%]**, SurfDep [Clay]**, Slope N [3.7%]† 13 39
I) Slope N [2%]**, SurfDep [Bedrock]**, TWI ≤ [7] † 27 34
J) Slope N [2%]**, SurfDep [Bedrock]**, TWI N [7] † 20 43

**, * and † statistically significant at P b 0.001, P b 0.01 and P b 0.05, respectively. r refers to correlation between measured and predicted values. Mean refers to mean organic layer
thickness. RMSE = root mean square error. SurfDep refers to surficial deposit. N, E, S and W indicate north, east, south and west aspect directions, respectively.

76 A. Laamrani et al. / Geoderma 221–222 (2014) 70–81



[N&E] [S&W]

[W][S]

Slope
P < 0.001

Slope
P < 0.001

Aspect
P < 0.001

Aspect
P = 0.023

TWI
P < 0.015

≤ 7              > 7

≤ 2                                 > 2

≤ 3.5                  > 3.5

O
L

T
 (

cm
)

A B C D E F

Fig. 5.Graphical representation of the regression treemodel 1 in Table 3. The distribution of OLT in the resulting landscape units nodes (A to F) is visualised via box andwhisker plots. The
lower andupper edges of the box represent the 25th and75th percentiles, and themedian is represented by the bar in themiddle of the box. Thewhiskers showed the largest and smallest
values, and outliers are represented by individual points.

77A. Laamrani et al. / Geoderma 221–222 (2014) 70–81
situated on till, with slopes N2% and TWI ≤ 7 (landscape unit E with
mean OLT of 20 cm). Lower OLT was found on bedrock with slope
≤2% and slope N2% (Landscape units C and I with a mean OLT of
34 cm and 37 cm, respectively) and on till (Landscape units A, F and H
with a mean OLT of 26 cm, 28 cm and 39 cm, respectively). Areas on
bedrock with slope N2% were most effectively subdivided on the basis
of the TWI into lower andmoderate OLT landscape units (I and J, respec-
tively) (Table 3 and Fig. 7). Themoderate OLT unitwas associatedwith a
higher TWI (N7) suggesting that landscape unit J represents zones of
soil water saturation.

4. Discussion

4.1. Individual relationship trends

The negative correlation betweenOLT andmineral soil slope indicat-
ed that the organic layer tended to be shallower in areas with high
slopes and deeper in areas with low slopes. Similar results were found
in other studies on ground surface slopes (i.e. Laamrani et al., 2013b;
Simard et al., 2009).

Higher values of TWI are mainly associated with clayey mineral soil
areas, which are the best candidates for high soil moisture content and
water accumulation. These results are similar to those of other studies
that found moisture-saturated sites were the most highly paludified
areas (Fenton et al., 2005; Lavoie et al., 2005).When compared to a pre-
vious study that was conducted at the surface by Laamrani et al.
(2013b), relationships between mineral soil aspect and OLT had similar
trends. In contrast to the previous study, convex and concave mineral
soil curvature variables (mean curvature, plan curvature and profile
curvature) were found to be greater and more statistically significant
compared to those computed at the ground surface, presumably be-
cause of depressional features that were revealed in the mineral soil
topography.

4.2. Regression tree-based modelling approach

Mineral soil slope was involved in all landscape unit subdivisions in
both models (1 and 2) andwas the first level of splitting (Figs. 5 and 7),
suggesting that OLT was largely controlled by the mineral soil slope at
the landscape level. Alone, mineral soil slope explained 28% of the vari-
ation in the whole dataset (not shown). In addition to confirming the
importance of mineral soil slope effects on OLT at the landscape scale,
which had been previously reported for the surface layers within the
Clay Belt (i.e., Giroux et al., 2001; Laamrani et al., 2013b; Simard et al.,
2009), our study also quantified the threshold (2%) at which mineral
soil slope could be used to discriminate units with deeper versus mod-
erately shallow organic layers. Furthermore, formodel 1, a slope thresh-
old 3.5% seemed to represent a cutpoint for discriminating between
paludified and non-paludified areas.

This study showed that higher OLT was found on north- and east-
facing slopes (lower exposure to solar radiation). The higher OLT
might be explained by the fact that north- and east-facing areas are
colder and allow more Sphagnum moss to accumulate. This finding
was similar to what was reported for the ground surface by Johnson
et al. (2009). In contrast to our results, Laamrani et al. (2013b) found
higher organic layer to accumulate on southwest-, west- and northwest
facing slopes (see map of OLT, Figure 7 in Laamrani et al., 2013b).

Despite the significant correlations found between OLT and individ-
ual stratified curvature variables, the latter were not involved in any
prediction of the OLT distribution through either regression model.
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Table 4
Accuracy assessment and related statistics of map prediction of the landscape units, based on regression tree model 1.

Landscape units Area OLT
(cm)

Paludification category Area Producer accuracy Overall accuracy

% ha % ha

B 46.8 33.6 68 High 46.8 33.6 83% 74%
A 2.5 1.8 43 Moderate
C 29.5 21.2 41 Moderate 43.4 31.2 74%
D 11.4 8.2 41 Moderate
E 8.0 5.7 21 Null 9.8 7.0 57%
F 1.8 1.3 25 Null

OLT: organic layer thickness. Overall accuracy is computed by dividing the total correctly classified sites on themap by the total number of sites in the confusionmatrix. Producer accuracy
indicates the probability of a field measurement site being correctly classified on the map (measure of class accuracy).
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One possible reason that could explain why curvature variables effect
was masked is that the variation in the mineral soil curvature, at the
local scale, was too small to be captured by the 15 m-resolution digital
model.

Surficial deposits and TWI also contributed to the landscape unit
partitioning for both regression tree models. Therefore, under condi-
tions where slopes were ≤2%, clayey surficial deposit and TWI N 7,
models 1 and 2 resulted in a homogeneous unit (B), representative of
high paludification conditions. Landscape units B for both models
seem to represent areas with conditions that may be less favourable
for tree growth since the presence of thick organic layer combined
with wet conditions on flat terrain is expected to limit tree establish-
ment and productivity (Lavoie et al., 2007); this was supported by an
on-going study that deals with the effect of organic layer thickness
and slope on forest productivity (Laamrani et al.; unpublished results).
They found that in average, landscape unit B showed the lowest stand
volumes, estimated for trees with diameters at breast height (dbh)
greater than nine cm, with 83 m3/ha and 80 m3/ha for models 1 and
2, respectively. In addition, evidence from field observations, together
with Fig. 6 and aerial photos, indicated that landscape unit Bmost likely
occur in both permanently and non-permanently paludified areas.
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Fig. 7.Graphical representation of regression treemodel 2with the distribution of organic layer
of the box and whiskers plot is given in Fig. 5.
The TWI threshold of 7 was also used as splitting rule in model 2 to
discriminate between low (landscape unit I) and moderately (land-
scape unit J) paludified bedrock with slopes N2%. Our field observations
and Fig. 6 indicated that most of the sampling points in landscape unit J
(higher TWI values) were located in topographic depressions at mid-
slope (i.e., concave bedrock irregularities). This was consistent with
other studies, which found that TWI describes the distribution and ex-
tent of soil moisture zones; the largest values were predicted in topo-
graphic hollows at higher elevation (Bou Kheir et al., 2010); and
therefore, TWI could be used as a means of delineating and classifying
landforms (Burrough et al., 2000; MacMillan et al., 2000). In addition,
the lack of correlation between bedrock slope and OLT (rs = 0.03,
P = 0.82, Table 3) was presumably related to these bedrock irregulari-
ties. These topographic conditions favour high moisture resulting in or-
ganic layer accumulation, the development of a deeper organic layer
(paludification) that is mainly composed of a thick Of horizon
(Laamrani et al., 2013a; Lafleur et al., 2010; Lavoie et al., 2007), and
are most likely specific to permanent paludification sites. We expected
that these depressions would affect many of measured surface proper-
ties such as water movement in the near surface organic soil horizon,
water infiltration, tree establishment and productivity.
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Overall, the model that was based only on mineral soil topography
explained 34% of the variation in the dataset. The model that was
based on mineral soil topography, together with surficial deposits, had
the greatest predictive power (R2adj = 0.52). For most spatial models,
coefficients of determination (R2) ≤ 0.5 are common,whereasR2 values
that are greater than 0.7 are unusual (Dahlke et al., 2009). For both of
our models, TWI made a significant contribution to estimating moder-
ate to highly paludified landscapes, since it is a predictor of zones of sat-
uration, and thick organic layers often accumulate in lowlands. Except
for landscape unit J, which was assigned to the permanent
paludification type in this study, both models were unable to further
subdivide landscape units (i.e., landscape unit B) into reversible and
permanent types. This suggested that both factors (time and topogra-
phy) interact together. Both models (i) produced simpler models that
were easier to understand, (ii) represented landscape units that were
meaningful in terms of the physical processes of OLT variability and dis-
tribution, and (iii) consisted of a small number of rules. Model 1 could
be easily and quickly implemented for making predictions whenever a
DEM is available with OLT measurements (Fig. 6), but model 2 can
only be used in situations where spatial information on surficial de-
posits (clay, till, bedrock) exist, which is not the case in most of the For-
est inventory maps.
4.3. Management implications

The results of this study are important for landscape management
for several reasons:

(1) Understanding how surface topography is related to OLT is an
important first step in predicting and mapping forest productiv-
ity across landscapes. This information will aid the forest man-
agers in predicting potential saturation zones, where an organic
layer often accumulates and will help them to adopt the appro-
priate forest management practices (i.e., field preparation treat-
ments and replanting). For example, TWI is simple in concept,
easily defined, and provides an intuitive notion of wetness. Con-
sequently, it can be used to better manage forest resources
where high soil moisture limits productivity.

(2) In order to maintain or improve forest productivity in the Clay
Belt region, management strategies should focus on sloping
sites (i.e., N2.3%) rather than on almost flat sites (≤2%) that are
associated with deep organic layer. The latter are often not suit-
able for tree plantations (Lafleur et al., 2010), provide few eco-
logical or economic motives to manage soils with low slopes
(Simard et al., 2009), and are expected to limit the use of equip-
ment that would be required formechanical site preparation and
harvesting within the highly paludified areas (Lavoie et al.,
2007).

(3) This study is part of a larger project that deals with the effects of
environmental variables and forest harvesting on paludification
and was conducted prior to implementation of recent forest
management prescriptions (harvesting, site preparation, and
planting). Therefore, the results and data from this study could
be used to determine the long-term impact of forest manage-
ment practices (i.e., forest harvesting, field preparation treat-
ments, and replanting) on the original organic layer properties.

(4) Results from this study have demonstrated that mineral soil to-
pography has a significant influence on the spatial distribution
of OLT and that these relationships can be used for partitioning
the landscape and, therefore, can help in future planning of land-
scape management. For instance, they can be used for defining
(i) promising areas where efforts and investments should be
made to obtain higher productivity after logging and planting
and (ii) vulnerable areas where structure and biodiversity of
paludified forest can be preserved.
5. Conclusions

To our knowledge, this study was the first to link topographic vari-
ables that were extracted at the surface of the mineral soil to different
degrees (representing organic layer thickness) and types of
paludification at the landscape-scale. The analysis of topography at the
mineral soil surface within the Clay Belt region demonstrated correla-
tions between individual topographic variables (slope, aspect, TWI),
surficial deposits and organic layer thickness. These correlations were
found to be relatively weak, and indicated that, at the landscape scale,
OLT and its distribution cannot be adequately explained by simple bi-
variate relationships. Consequently, two regression tree-based models
(models 1 and 2) were developed in this study and provided insight
into set of predictor variables that are most important for OLT distribu-
tion. Mineral soil slope, TWI and aspect proved to be highly correlated
with OLT for both models. Model 1 based onmineral soil surface topog-
raphy explained 34% of the variation in organic layer thickness, whereas
model 2 based onmineral soil surface topography and surficial deposits
explained 52%.

Regression tree Model 1 allowed the combination of different maps
(slope, TWI and aspect) for producing a landscape unit map, upon
which OLTwas determined and related to increasing paludification cat-
egories. A good overall accuracy of 74% was achieved for the resulting
model 1 map. One of the most important finding that was revealed by
model 2 indicated that bedrock irregularities (i.e., depressions) modi-
fied topographic control of wetness and promoted the advancement
of permanent paludification. Except for landscape unit J, which was
assigned to the permanent paludification type, both models were un-
able to further subdivide the resulting landscape units (i.e., landscape
unit B) into reversible and permanent types. Future work will focus on
the use of additional topographic variables (i.e., topographic slope posi-
tion) and other remote sensing techniques (i.e., automated classifica-
tion) to discriminate between the two categories of paludification
(reversible and permanent) within a larger LiDAR covered area
(100 km2).
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