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Northern Canadian boreal forest is characterised by accumulation of a thick organic soil layer (paludification).
Two types of paludification are recognised on the basis of topography and time since the last fire, viz., permanent
paludification that dominates in natural depressions within the landscape, and reversible paludification that
occurs on flat or sloping terrain over time following fire or mechanical site preparation. Accurate information
about the occurrence of permanent or reversible paludification is required for land resource management.
Such information is useful for the identification of locations of existing paludified areas where investment after
harvesting should help to achieve greater productivity. This study investigated the potential for using a semi-
automated method that was based on geomorphological analysis to map and differentiate between the two
paludification types at the landscape scale within the Canadian Clay Belt region. For the purposes of this study,
slope, topographic position index (TPI), and topographic wetness index (TWI) were generated from a LiDAR dig-
ital terrainmodel. TPI and TWI are, respectively, predictors of surface morphology (i.e., depressions vs flat areas)
andmoisture conditions (i.e., wet vs dry), andwere used to explain paludification occurrence. A semi-automated
classification method based on TPI and slope was firstly used to create six initial topographic position classes:
deep-depressions, lower-slope depressions, flat surfaces, mid-slopes, upper-slopes, and hilltops. Each of these
six classes was then combined with TWI classes (representing moisture conditions: wet, moderately wet, and
dry) and this combination assisted in assigning each resulting class to one of the two paludification types.
Slope and TWI valueswere used in sub-dividing the lower slope depression class, based on slope, into significant-
ly different sub-classes, namely open and closed depressions (Tukey's HSD, P b 0.001). The distribution of field
data (e.g., tree basal area, organic layer and fibric horizon thicknesses) within each position class provided addi-
tional information for corroborating the assignment of each class to a defined paludification type. The proposed
semi-automated classification provided a relatively simple and practical tool for distinguishing andmapping per-
manent and reversible paludification types with an overall accuracy of 74%. The tool would be particularly useful
for implementing strategies of sustainablemanagement in remote boreal areaswhere field survey information is
limited.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Gradual accumulation of thick organic soil layers characterises bore-
al forest floors of the Hudson Bay–James Bay lowlands (Canada). Accu-
mulations are attributed mainly to paludification, which generally
creates wetter conditions that decrease soil temperature, decomposi-
tion rates, microbial activity, nutrient availability, and increase canopy
openings (Crawford et al., 2003; Lavoie et al., 2005). Paludification can
cause substantial productivity losses in the boreal forest and, conse-
quently, potential sources of wood fibre. Paludification is especially
problematic in the forested landscapes of the Clay Belt (Fig. 1A), a region
i).
within the Hudson Bay–James Bay lowlands, where it has facilitated
the transformation of productive forests into unproductive forested
peatlands. Within the Clay Belt, ground surface topography and time-
since-last fire are two major drivers of paludification (Fenton et al.,
2009). Consequently, two types of paludification (i.e., permanent and
reversible) are recognised on the basis of these two factors. Theoretical-
ly, these two types occur in different locations across the landscape. Per-
manent paludification dominates in natural depressions, which have
wetter soil conditions favouring organic layer build-up. Reversible
paludification occurs on flat or sloping terrain, where feather moss-
dominated ground cover is replaced by Sphagnum spp. (Fenton and
Bergeron, 2006), after about 100 years following fire (Simard et al.,
2007). Reversible paludification may be reversed through natural se-
vere fire or a combination of silvicultural practices and site preparation,
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Fig. 1. Study location within the Clay Belt region of Ontario and Quebec (A). Topographic overview of the study area showing field sampling points along transects and plots (B).
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as detailed by Fenton et al. (2009). In contrast, permanent paludification
is not reversible, as its name suggests.

Several studies have dealt with either one or the other paludification
type within Clay Belt black spruce (Picea mariana [Miller] BSP) forests
(Fenton et al., 2005; Lavoie et al., 2005; Simard et al., 2009). Yet research
examining spatial distributions of these two paludification types across
larger areas is rare (Laamrani et al., 2014b,c; Lavoie et al., 2007).
Mapping their occurrence at the landscape scale is critically important
for landmanagers and decision-makers, if they are to implement appro-
priate management practices. To effectively manage black spruce for-
ests in the Clay Belt, accurate spatial maps that can identify the two
paludification types are required. Such maps could be used to delineate
areas where efforts and investments should be made to achieve higher
productivity after logging or to identify retention areas that maintain
structural attributes and habitats. Finding the terrain attribute that can
most easily differentiate between paludification types could be consid-
ered and addressed within the context of landscape classification.

Light Detection and Ranging (LIDAR, remote sensing system) is a
practical technology for landscape analysis (Southee et al., 2012) and
captures topographic features with high vertical and horizontal preci-
sion, making it suitable for this study. Also, LiDAR potentially provides
information on surface morphology (e.g., flat areas vs depressions) and
wetness conditions (e.g., wet vs dry), which are intuitively important
in discriminating between reversible and permanent paludifications

image of Fig.�1
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(Laamrani et al., 2014b). The application of such indices is a power-
ful approach for landscape classification in forested environments
(Emili et al., 2006; Laamrani et al., 2014b; MacMillan et al., 2007;
Tchir et al., 2004).

While numerous methods and algorithms have been devised to
classify the landscape into morphological classes (e.g., Clark et al.,
2009; Creed and Beall, 2009; Lindsay and Creed, 2005), the majority
of them have been developed largely for non-forestry applications
(e.g., hydrology) and, inmost cases, have not addressed characterisation
of depressions in relatively flat or low relief areas. In the few studies
attempting to distinguish depressions from other landscape classes
(i.e., flats vs depressions; Lindsay and Creed, 2005), the approaches
and algorithms that were used were complicated and very time-
consuming; moreover, their implementation and interpretation fre-
quently requires a solid statistical background. To avoid these issues
and ultimately allow this technique to be applied by resource man-
agers, our method had to be simple to implement, automated or
semi-automated, compatible with GIS environments, and applicable to
other areas. The objective of this study was to investigate the potential
for using a semi-automated landscape classification method based on se-
lected topographic indices to distinguish and map reversible and perma-
nent paludified landscapes in Clay Belt black spruce forests.

2. Materials and Methods

2.1. Study Area

The studywas located in thewestern black spruce-feathermoss bio-
climatic domain (Robitaille and Saucier, 1998), and more precisely,
within the Clay Belt, a vast conifer-dominated region spanning the On-
tario–Quebec border (Fig. 1a). The dominant landforms are flat plains,
which were generated by extensive and thick glacio-lacustrine clay de-
posits that were left behind by pro-glacial Lake Ojibway (Veillette,
1994). Bedrock outcrops and gentle hills are also found within the
Clay Belt. Our sampling site covered 720 ha of boreal forest, in which
the elevation ranged from 290 m to 314 m, averaging 304 m above
sea level. Ground surface slope ranged from 0 to 34%; about 65% of the
area had slopes ≤ 3%, whereas slopes ≥ 16% represented about 1% of
the area. Drainage courses run locally in a southwestern direction
through the study area to produce a relatively complex topography
(Fig. 1b). Mean annual temperature is−0.7 °C and total annual precip-
itation is 906 mm (Environment Canada, 2011; Matagami weather sta-
tion, about 60 km NE of the study area).

Black spruce dominates stands in the study area, whereas occasional
stands dominated by jack pine (Pinus banksiana Lambert) or trembling
aspen (Populus tremuloides Michaux) are dispersed across the land-
scape. Ground cover includes Sphagnum spp., feathermosses (principal-
ly Pleurozium schreberi (Brid.) Mitten) and shrubs (dwarf ericaceous
species), which have variable coverage across the landscape.

2.2. Field Dataset Collection

Field data were collected during summer 2010 along transects, and
within circular plots (Fig. 1b). At each sampling point along transects,
organic layer thickness (OLT) was measured with an auger, following
Laamrani et al. (2014a). One hundred and seventy-eight plots (400 m2)
were randomly distributed between and outside of transects; these in-
cluded different forest types and topographic positions. In each plot, a
pit was dug, and OLT and thickness of the fibric soil horizonwere record-
ed. All trees that were larger than 9 cm in diameter at breast height (dbh;
1.3 m above ground level, which is considered to be the minimum mer-
chantable limit) were recorded within each plot and used to calculate
basal area (m2/ha) as a productivity indicator. Overall, the field dataset
consisted of three groups that were used for: topography/organic layer–
terrain relationships (1380 points, corresponding to 10 m-interval sam-
pling points along transects); vegetation/soil–terrain relationships (178
point-plots); and for validating predictive maps (170 points; transect
#4; randomly selected).

2.3. Digital Terrain Model and Derived Topographic Variables

LiDARdatawere collected on 28May2010 over 100 km2with a den-
sity of 2.8 points/m2 and vertical accuracy RMSE of 0.065 cm. RawLiDAR
data (provided in LAS format)were pre-processed by separating canopy
pulse returns fromgroundpulse returns. The last returns thatwere clas-
sified as ground surface were interpolated with 0.5 m resolution and
gridded at a 10 m resolution to produce a digital terrain model (DTM).
The DTM was principally used to identify topographic features at the
landscape scale; we considered a 10 m grid resolution as adequately
representing those features and capturing the area's topography
(Laamrani et al., 2014a). Using standard procedures in ArcGIS 10
(ESRI, 2011), slope, elevation, topographic position index (TPI), and
topographic wetness index (TWI) grids were created from DTM. In
this study we employed LiDAR-generated TPI and TWI because we
assume these are closely associated with permanent and reversible
paludification mapping. Field sample locations were superimposed
upon these grids, and corresponding parameters (topographic vari-
ables, field data information)were extracted for each sampling location.
Allfield-sampling locationswere recordedusingGNSS (Global Navigation
R8 Satellite System) with mm/cm-level accuracy to allow their direct
comparison with the DTM.

2.3.1. TPI and Classification
TPI is the difference between a central cell elevation value and the av-

erage elevation of the neighbourhood around that cell. Neighbourhood
refers to all grid cells, the centres of which lie within a defined radius of
the central cell. Negative TPI indicates that the central cell is lower than
its surroundings,while positive TPImeans that it is higher than its average
surroundings. TPI values of zero and near-zero indicate that the central
cell is close to the mean elevation of the neighbourhood (Jenness et al.,
2011;Weiss, 2001). Since TPI represents a measure of surface morpholo-
gy (Tagil and Jenness, 2008), its values potentially provide a simple and
powerful means of classifying the landscape into topographic position
classes. First, we used Weiss's method to classify the landscape into dis-
crete topographic position classes using the standard deviations of TPI
and slope (Fig. 2a). Second, we enriched Weiss's classification with new
classes described in Section 3. Weiss's classification criteria details are
provided in Table 1.

2.3.2. TWI and Surface Water Movement
TWI is a relative measure of soil moisture for a specific cell and is

regarded both as an indicator of topographically driven soil surface
water distribution (Beven and Kirkby, 1979; Wilson and Gallant,
2000), and as a guide to water movement within a particular landscape
(McKenzie and Ryan, 1999). TWI values were calculated for each cell
(10 m × 10 m) using the formula TWI = ln (As / tan β) (Moore et al.,
1993), where As is the specific catchment area and β is the local slope
angle (degrees). Highest values of TWI were associated with wet
areas, while the lowest TWIs were associated with dry areas (Bou
Kheir et al., 2010; Sørensen et al., 2006).

2.4. Assignment of Paludification Types to Topographic Position Classes and
Their Validation

Assignment of paludification types to a topographic position class
based on the relationship between soil wetness classes and the six topo-
graphic position classes was realised in several steps:

First, standard deviations of TPI values and slope were used to clas-
sify the landscape into six topographic position classes that were denot-
ed: deep depressions, lower slope depressions, flat surfaces, mid-slopes,
upper slopes, and hilltops (Fig. 3). The six classes were generated using
Weiss's classification criteria and the Land Facet Corridor Tools ArcGIS



Fig. 2. TPI and TWI grids used in this study. (a) Thehighest and lowest TPI values occur inhigher and lower terrain positions, respectively. (b) The lowest,moderate, and highest TWI values
are found in dry, moderately wet, and wet areas, respectively.
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extension (Jenness et al., 2011). In following Weiss's scheme, high TPI
values were found at higher terrain positions (e.g., hilltops), while low
TPI values were found in lower terrain positions (e.g., depressions). As
shown by other studies (e.g., Deumlich et al., 2010), the choice of
neighbourhood size was based on an iterative process in which several
circular neighbourhood sizes were tried until the output that best
corresponded with actual study area topography was generated
(50 m-radius in our case; Fig. 2a).
Table 1
Descriptions of six topographic position classes based on standardised topographic
position index (TPI) and slope.

Topographic position classes Criteria Areab

Classa Descriptionb TPIa Slope (%)b ha (%)

1 Deep depressions TPI ≤ −1 SD 43 6
2 Lower slope depressions −1 SD b TPI ≤ −0.5 SD 74 10
3 Flat surfaces −0.5 SD b TPI b 0.5 SD ≤1.8 385 53
4 Mid-slopes −0.5 SD b TPI b 0.5 SD N1.8 88 12
5 Upper-slopes 0.5 b SD TPI ≤ 1 92 13
6 Hilltops TPI N 1 SD 39 5

Note: TPI and slope criteria followWeiss (2001) and Laamrani et al. (2013b), respectively.
a Designation according to Weiss' classification scheme.
b Designation according to this study. SD = Standard Deviation.
Second, soil wetness classes were then created by classifying TWI
values (Fig. 2b) into three categories of wetness (wet, moderately wet,
dry), using the same TWI thresholds that were determined by
Laamrani et al. (2014b; i.e., TWI threshold of 7). These thresholds
were similar to values that were reported elsewhere to delineate wet
areas (e.g., 6.9 TWI threshold, reported by Creed and Sass, 2011). We
then analysed TWI class distributions within each topographic position
class. Combinations of TWI classes and topographic position classes pro-
duced a set of new categories (e.g., dry/flat surfaces, wet/flat surfaces,
and dry/upper).

Third, each of these new classes was assigned to a defined palu-
dification type, based on relationships between soil wetness classes,
slope and the six topographic position classes. To do so, we used a deci-
sion key procedure, which is similar to a non-parametric regression tree
modelling approach. The decision key of the logic that was followed in
assigning a topographic class to the paludification types is further
detailed in the Results and Discussion section. For example, an area on
the landscape with the dry/upper combination may reasonably be
assigned to the reversible paludification type. Field data (vegetation
and soil) were also used to determine whether the assignment of
topographic position class to one or the other paludification type was
plausible, together with the ease with which a paludified area could
be reversed. For example, paludified areas with lower OLT and dry

image of Fig.�2


Fig. 3. Thematic landscape map based on TPI values. Descriptions of each class are in Table 1.
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conditions would bemuch easier to reverse than those with higher OLT
and wet conditions.

2.5. Statistical Analyses

Prior to statistical analysis, the issue of collinearity between TPI and
TWI was addressed. To do so, we used the most commonly applied
method, which uses a Pearson correlation coefficient threshold (|r|) of
0.7 as an approximate indicator (Dormann et al., 2013). An absolute
value of r that exceeds 0.7 indicates highly correlated variables, and
vice-versa. In our case, the two variables (TPI and TWI)were not strong-
ly correlated, i.e., |r| = 0.3; therefore, the assumptions regarding the
lack of collinearity between the two variables were satisfied.

Slope, elevation, TWI and field data statistics were computed within
the resulting topographic position classes. One-way analysis of variance
(ANOVA) tested equality of variable means among the resulting topo-
graphic classes. Post-hoc Tukey HSD tests of mean topographic indices
and field responses separated pairs of topographic landscape classes.
In other words, we classified space into initial six classes that were
based on variables extracted from our DTM. Then, ANOVA analysis
and post-hoc means tests were used to confirm or refute significant
class differences. Significance was declared at α= 0.05, with all statis-
tical analyses being performed in R (R Development Core Team, 2011).

3. Results and Discussion

3.1. Topographic Position Classification

Results of topographic position classification based on Weiss's
criteria are summarised in Table 1, and spatial distributions of the six to-
pographic position classes are shown in Fig. 3. More than 53%of the area
was classified as flat surfaces, 6% as deep depressions, 10% as lower
slope depressions, 12% as mid-slopes, 13% as upper-slopes, and 5% as
hilltops. Flat surfaces and mid-slope areas had the same TPI thresholds
(Table 1), with slope values being used to distinguish between these
two possibilities. We used a 1.8% slope threshold based on our recent
work, in which it was deemed appropriate for distinguishing areas
with lower and higher slopes (Laamrani et al., 2014a). In using Weiss's
method, other studies have similarly applied various slope threshold
values to distinguish between flat and mid-slope areas (e.g., De Reu
et al., 2013; Deumlich et al., 2010).

3.2. Relationship Between Topographic Position Classes and Terrain
Attributes

Fig. 4 shows the relationships between cell-derived means of indi-
vidual topographic variables that were used in this study and the six to-
pographic position classes. As was confirmed by field surveys, greatest
values (high wetness) were found in depressions (i.e., channels) in
flat terrain, and in topographic hollows at higher elevation (i.e., local
bedrock depressions). Mean TWI decreased with increasing local topo-
graphic relief, from deep depressions (10 ± 0.64; mean ± SE), through
flat surfaces (9 ± 0.05), to hilltops (7 ± 0.16). Mean TWI significantly
differed among classes (ANOVA, P b 0.001; Fig. 4), suggesting that it
could be used as a complementary tool for further dividing slope posi-
tions within the landscape. Mean ground surface slopes and elevations
varied significantly among topographic position classes (Fig. 4). Slope
was lowest on flat surfaces (2± 0.03%), intermediate in lower slope de-
pressions (5 ± 0.20%), and highest on hilltops (6 ± 0.58%). Upper-
slope and hilltop classes did not differ (Tukey's HSD test, P N 0.05), but
other classes significantly differed from one another (Tukey's HSD
tests, P b 0.05; Fig. 4).

3.3. Assigning Topographic Position Classes to Paludification Types

Table 2 illustrates results of the assignment of each topographic
position classes to the paludification types.

3.3.1. Deep Depression Class
Deep depressions (class 1) were frequently associated with deeper

active streams and treeless depressions, and accurately recognised by
Weiss's classification (75% site matching). About 67% of class 1 was
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Table 2
Assignment of topographic position classes and sub-classes to paludification types and summar
this assignment.

Topographic position class OLT (mean ± SE cm) Basal a

# Sub-classa Description Total Fibric

2 Lower slope depressions 38 ± 1.8 14 ± 2.5 28 ±
2.1 Closed depressions 53 ± 3.5 17 ± 5.0 18 ±
2.2 Open depressions 29 ± 1.4 10 ± 1.9 39 ±

3 Flat surfaces 55 ± 0.9 15 ± 1.4 25 ±
3.1 Flat bogs 86 ± 2.4 35 ± 3.2 4.4 ±
3.2 Flat moderate/wet surfaces 52 ± 1.3 14 ± 1.4 26 ±
3.3 Flat dry surfaces 37 ± 2.0 10 ± 2.4 25 ±

4 Mid-slopes 29 ± 1.0 8 ± 1.0 31 ±
5 Upper-slopes 36 ± 1.3 8 ± 1.7 36 ±
6 Hilltops 26 ± 1.3 8 ± 1.9 35 ±

N/A: accuracy not assessed because this sub-class division was based on soil wetness; no such
Note: Overall accuracy is a ratio between correctly allocated number of field sites and the ov
individual classes.

a Identified according to this study. SE = Standard Error. Plus (+) sign gradient refers to the
much easier than +).
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dominated by wet or moderately wet soils (Fig. 5). Since class 1 mostly
represented permanently saturated or inundated areas, it was not con-
sidered important from a forest management perspective, and was de-
liberately excluded from our field survey and subsequent analyses.
3.3.2. Lower Slope Depression Class
Lower slope depressions (class 2) were frequently identified in shal-

low depressions (negative TPI), and associated with elongated, peat-
filled former streambeds (fossilised drainage systems) and depressions
within the underlying bedrock (Fig. 6; e.g., areas between positions
320 m and 360 m, and 1200 m and 1300 m). To our knowledge, this
type of paludified depression has never been reported in the Canadian
boreal forest and is rarely mentioned in the literature from other
world regions (e.g., Gorozhankina, 1997). As is the case for class 1, wet
and moderately wet soil predominated in the lower slope class (79%;
Fig. 5).

Class 2 had amean OLT of 38± 1.8 cm, mean tree basal area of 28±
3.1 m2/ha (low productivity), and a mean fibric horizon thickness of
14 ± 2.5 cm (Table 2). For most variables that were used (topographic
and field data), class 2 exhibited high standard errors (SE), suggesting
that sub-division of the initially defined class was required. Reducing
this variability within class 2 resulted in splitting lower slope depres-
sions into two sub-classes (closed and open depressions), based upon
a 1.8% slope threshold (Laamrani et al., 2014a). Once splitting was per-
formed, the resulting open depressions exhibited greater mean tree
basal area (39 ± 2.2 m2/ha), lower OLT (29 ± 1.4 cm), and a more
decomposed fibric horizon (thickness of 10 ± 1.9 cm) (Table 2). Closed
y of field data (organic layer thickness “OLT” and basal area) that were used to corroborate

rea (mean ± SE m2/ha) Paludification type assignment Producer's accuracy

3.1 86%
2.3 Permanent 80%
2.2 Reversible+++ 91%
1.3 87%
1.1 Permanent 96%
2.8 Reversible+ N/A
1.2 Reversible++ N/A
1.5 Reversible++++ 62%
2.3 Reversible+++ 59%
2.7 Reversible++++ 57%

Overall accuracy: 74%

field data were available.
erall number of classified sites. Producer's accuracy measures classification accuracy for

ease with which a paludified area can be reversed (e.g., ++++ is easier than+++ and
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depressions, in comparison, had lower tree basal areas (18 ± 2.3 m2/ha),
greater OLT (53 ± 3.5 cm), and greater fibric horizon thicknesses (17 ±
5.0 cm). Consequently, open and closed depression sub-classes sig-
nificantly differed from one another (Tukey's HSD test, P b 0.001)
with respect to the aforementioned variables.

The closed depressions class likely represent locations within the
landscape with wetter soil conditions favouring organic layer accumula-
tion, andwhere surface runoff is impeded or slowed down. Open depres-
sions likely represent areas within the landscape with shallow organic
layers, which are not closed to downslope water movement and are
more favourable for tree growth. Distinctions between open and closed
depressions were not initially captured by Weiss's classification, but
they were easily added to it (Weiss' method) using a new slope criterion
(open depression, slope N 1.8%; closed depression, slope ≤ 1.8%).
3.3.3. Flat Surface Class
Most of the area under study was classified as flat surfaces (class 3),

not surprising given the predominance of flat ground (Veillette, 1994).
About 81% of class 3 sites had moderately wet (39%) to wet (42%)
soils (Fig. 5). Among initially defined classes, class 3 had the greatest
OLT (55 ± 0.9 cm) and lowest tree basal areas (25 ± 1.3 m2/ha;
Table 2). Trees in class 3 plots exhibited a broad range of basal area
(0.59–50.59 m2/ha), suggesting that local sources of variation were
not considered during landscape classification (e.g., the shape of the
underlying material, time-since-last fire). Like class 2, class 3 variables
(topography, vegetation, and soil) exhibited relatively high SE (Table 2),
suggesting that flat surfaces could be split into more homogeneous sub-
classes. Indeed, fieldmeasurements showed that landscape locations cor-
responding to mineral soil depressions occurred mostly within flat bogs
(Fig. 6; e.g., between positions 400 m and 650 m), with very low mean
tree basal area (4.4 ± 1.1 m2/ha), and very thick organic layers (86 ±
2.4 cm) and fibric horizons (35 ± 3.2 cm). These conditions seemed to
be representative of permanent paludified areas that are not suited
for forest management. While distinctions between two resulting sub-
classes were mainly based on field survey data, flat bog areas could be
clearly recognised in forest inventorymaps.Whenflat surfaces coinciding
with depressions inmineral soil or bedrockwere excluded from the initial
dataset (non-split data), mean tree basal area increased slightly (27 ±
1.2 m2/ha), while mean OLT (49± 2.7 cm) and fibric horizons decreased
(13 ± 1 cm; Table 2).

Reduction in variability that was achieved by separating class 3 into
two sub-classes using the shape of the underlying material was slightly
less than that provided by Weiss's classification, suggesting that dis-
criminating sub-classes was extremely difficult when based mainly on
TPI; class 3 was located in flat areas where no slope variability in the
terrain exists. Further sub-division of class 3 (excluding bogs) was
based on TWI (dry, moderately wet, wet), which resulted in two new
subclasses, i.e., flat moderate/wet surfaces and flat dry surfaces
(Table 2; sub-classes 3.2 and 3.3, respectively). These new classes dif-
fered strongly in OLT (52 ± 1.3 cm and 37 ± 2.0 cm, respectively;
Tukey's HSD, P b 0.001) but did not differ in terms of tree basal area
(26 ± 2.8 m2/ha vs 25 ± 1.2 m2/ha; Tukey's HSD, P = 0.95). Time-
since-fire could not be similarly used to reduce variability within the
dataset; based on field observations, stands in the study area belonged
to one of two age classes (75- and 125-years-old), where the first
class was over-represented (89% of sample points) relative to the sec-
ond (11%).

3.3.4. Mid-slope, Upper Slope and Hilltop Classes
Mid-slope (class 4), upper slope (class 5), and hilltop (class 6) clas-

ses were generally associated with upper terrain positions. The three
classes included a high percentage of dry sites (54%, 57% and 89%, re-
spectively; Fig. 5). As expected, these sloping surfaces (classes 4, 5,
and 6) had relatively high tree basal areas (31 ± 1.5 m2/ha, 36 ±
2.3 m2/ha, and 35 ± 2.7 m2/ha, respectively), and low/moderate OLTs
(29 ± 1.0 cm, 36 ± 1.3 cm and 26 ± 1.3 cm, respectively; Table 2),
most likely a result of their prevailing dry conditions that were caused
by downslope water movement.

Combinations of higher landscape positions, shallow-moderate or-
ganic layer depths, and low soil moisture are more favourable for tree
growth and, thus, these three classes were likely representative of re-
versible paludified areas in general. Field surveys showed that bedrock
depressions were locally observed on these sloping surfaces (Fig. 6;
for example, positions along transect 4 at 170 m to 240 m, 960 m to
990 m, and 1200 m to 1240 m). Occurrence of these depressions in
the bedrock created locally wetter soil conditions that likely favoured
local organic layer build-up (paludification). This finding is consistent
with earlier studies where paludification occurred on sloping, well-
drained terrain directly upon bedrock (Laamrani et al., 2013, 2014a;
Payette, 2001; Simard et al., 2009), where humic material was neg-
ligible and fibric material dominates (Larocque et al., 2003). In most
cases, these bedrock depressions could be identified from surface
roughness of the bedrock, which was obtained from field data rather
than on the basis of topographic position classification, because they
did not correspond to depressions in the ground surface. To our knowl-
edge, topographic maps of bedrock are not available; however, we have
recently demonstrated the feasibility of using ground-penetrating radar
(GPR) as amethod for detecting andmapping local bedrock depressions
beneath the organic layer (Laamrani et al., 2013).

3.4. Topographic Position Classification Performance

In this study, we used TPI values to semi-automatically derive to-
pographic position classes (according to Weiss, 2001) from the
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LiDAR-derived DTM. Indeed, we used quantitative landscape classifica-
tion to differentiate between permanently and reversibly paludified for-
est soils. We also demonstrated that Weiss' classification method was a
useful tool for classifying landscapes within flat to hilly areas of the Clay
Belt. The initial classification divided the DTM into six topographic posi-
tion classes, based on considerations of both local slope and landscape
position, as measured by TPI. We revised this classification to increase
recognisable sub-classes (based on slope and TWI information) that
were assigned to one of the known paludification types. For example,
the lower slope depression class was classified into closed and open de-
pression sub-classes, which, respectively, represented permanent and
reversible paludification types. Thus, cells in closed depressions were
distinguished from cells that are not closed to downslope water move-
ment. A suite of summary statistics describing the distribution of field
data (OLT, fibric horizon thickness, tree basal area) within each topo-
graphic position class provided additional information that assists in
assigning each class to a defined paludification type. This agrees with
previous studies where factors other than morphological variables
(e.g., vegetation, soil) were important considerations in defining topo-
graphic position classes and assigning them to ecological processes
(Bou Kheir et al., 2010; MacMillan et al., 2007).

Overall, the classification that we used recognisedmajor terrain fea-
tures and effectively delimitedmajor paludification patterns in the area.
This was consistent with previous studies, which found that TPI offers a
powerful approach for classifying the landscape into topographic
classes, despite some restrictions (e.g., De Reu et al., 2013; Tagil and
Jenness, 2008). However, occasional problems were experienced with
Weiss' classification method: (i) areas around streams were classified
as hilltops due to their elevated position relative to stream bottoms;
thus, hilltops were most likely overrepresented. (ii) Subtle topographic
differences within lower slope depressions and flat surfaces were not
captured using the original classification. These problems might be
dealt with by using more sensitive criteria such as modifying threshold
Fig. 7.Map showing the distribution of permanent and reversible paludified areas in the
breaking points of classes or assessing combinations of neighbourhood
sizes.

3.5. Validation of the Resulting Maps

The assignment approach provided a set of decision rules that
were applied in ArcGIS to create a thematic map of the resulting
paludification types across the study area and for the entire LiDAR cov-
erage area (~100 km2). Themap summarising the spatial distribution of
permanent and reversible paludified areas is illustrated in Fig. 7. Valida-
tion of thismapwas based on a spatially continuous cross-sectional pro-
file section of the surface topography that was generated along transect
4 (Fig. 6), and which was based on an independent field survey,
consisting of 170 sampling points. Elevation values were extracted
and used to generate the spatially continuous cross-sectional profile of
the surface topography. Each sampling location along the profile was
assigned to one of the six resulting topographic classes and compared
to its corresponding class over the thematic map using a confusion
matrix (matched-unmatched decisions). An overall 74% accuracy was
achieved, suggesting that most permanent/reversible paludified sites
could be accurately mapped. Flat surfaces had the highest match
(87%), followed by lower slope depressions (86%). Hilltop, upper slopes
andmid-slopes had the lowestmatches (57%, 59%, and 62%, respective-
ly), which may have been due to the prevalence of the aforementioned
local depressions in the bedrock. Among sub-classes, flat bogs had the
highest matches (96%). Open depression sites were accurately mapped
(91% matching) compared to closed depression sites (80% matching).

3.6. Forest Management Implications and Paludification Type Assignment

From a management perspective, understanding the spatial distri-
bution of topographic position classes is an important first step in
predicting and mapping forest productivity across landscapes. TPI and
study area, and for the entire LiDAR coverage area (~100 km2) within the Clay Belt.
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TWI that are derived from remotely sensed LiDAR data are simple in con-
cept to implement, easily defined, and provide intuitive notions of surface
morphology and wetness. They can be used by forest managers to define
promising areas for forest management and select sensitive areas where
structure and biodiversity of paludified forest could be preserved; they
can be used to map zones of saturation where organic layers are suscep-
tible to accumulation; and landscapes can be classified into spatially
homogenous units in terms of geomorphological andmoisture character-
istics. The method that we have employed offers a reasonable first ap-
proximation of a useful, stable framework for detecting and mapping
permanent/reversible paludification in the Clay Belt (Table 2). It has the
potential to facilitate forest management decisions, which in turn could
improve forest productivity. For example, we demonstrated that (i) flat
sites coinciding with mineral soil or bedrock depressions, and closed de-
pression sites are very likely associated with deep organic layers and
may reasonably be assigned to permanent paludification (Table 2).
These areas are often not suitable for tree planting and provide no eco-
nomic incentives formanaging them; (ii) flatmoderate/wet surfaces rep-
resent an advanced stage of paludification, but they might be reversed
(Table 2) through mechanical site preparation (e.g., powered disc
trenching), which would provide benefits through thick fibric layer
removal; and (iii) mid-slopes, upper-slopes and hilltop sites and open
depression sites represent early to moderate stages of reversible palu-
dification (Table 2), which provides an important economic motive for
managing them. Their low to moderate OLT and low moisture contents
likely would not limit equipment that is used inmechanical site prepara-
tion and harvesting. However, the analytical approaches that we used
have provided only a current snapshot of the paludified landscape, since
paludification is a dynamic process that changes with time.

4. Conclusions

Our use of a semi-automated classification method for identifying
morphological classes at the landscape scale has proven to be a promis-
ing technique for forest management. Together, TPI, slope and TWI
identified continuous areas of the landscape that were linked to areas
with varying wetness and morphological conditions, which could be
used inmapping paludification types. About 74% of permanent/reversible
paludified sites were accurately mapped, highlighting the suitability of
the semi-automated approach for data exploration, and the mapping
and differentiation of permanent/reversible paludification types. This
method is easily implemented in ArcGIS, easy to understand, and thresh-
olds can bemodified or adaptedwhen necessary, and could be applied to
other boreal areas. It has the advantage of integrating topographic vari-
ables (e.g., slope) that in previous studies, have been found useful in
explaining paludification types. This study also showed that splitting
some initial classes into different sub-classes explained more variation
in the spatial distribution of permanent/reversible paludified landscapes
and provided more realistic relationships between topographic position
classes, topographic indices, and field survey data. Unlike Weiss' topo-
graphic position-based spatial classes, our study benefited from the inclu-
sion of field data on vegetation and soils to create classes with more
comprehensive information on paludification. This study also demon-
strated that LiDAR-derived DTM has great potential for forest manage-
ment other than simply providing a set of elevation values, and yields a
wide variety of landscape morphological characteristics, which may be
important to forest managers and researchers in explaining and
managing paludification. Finally, it should be mentioned that this study
highlighted the role of bedrock in the spatial distribution of both
paludification types on the landscapes of the Clay Belt and that more re-
search is required on this issue.

Acknowledgements

The first author was financially supported by scholarships from the
Fonds Québécois de la Recherche sur la Nature et les Technologies
(FQRNT), the Natural Sciences and Engineering Research Council of
Canada (NSERC), the NSERC-UQAT-UQAM Chair in Sustainable Forest
Management, and Tembec Incorporated. Special thanks go to M. Louis
Dumas (Tembec) for his valuable collaboration throughout the study,
Dr. Benoît St. Onge from the Université du Quebec à Montréal
(UQAM) for his help with the raw LiDAR data processing, and Dr.
W.F.J. Parsons from the Centre d'étude de la forêt (CEF), who revised
the English and helped to improve the quality of the manuscript. We
also thank all the people who assisted us with the fieldwork. This re-
search was funded by NSERC(# CRDPJ 390778 – 09)) and the Regional
Conference of Elected Representatives of James Bay (# PPRMVF-2009-
03), through the Programme de participation régionale à la mise en
valeur des forêts-Quebec Ministry of Natural Resources. The authors
are grateful to the editor and two anonymous reviewers for their con-
structive comments on an earlier version of this paper.
References

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of
basin hydrology. Hydrol. Sci. Bull. 24, 43–69.

Bou Kheir, R., Bøcher, P.K., Greve, M.B., Greve, M.H., 2010. The application of GIS based
decision-tree models for generating the spatial distribution of hydromorphic organic
landscapes in relation to digital terrain data. Hydrol. Earth Syst. Sci. 14, 847–857.

Clark, R.B., Creed, I.F., Sass, G.Z., 2009. Mapping hydrologically sensitive areas on the
Boreal Plain: a multitemporal analysis of ERS synthetic aperture radar data. Int. J. Re-
mote Sens. 30, 2619–2635.

Crawford, R.M.M., Jeffree, C.E., Rees, W.G., 2003. Paludification and forest retreat in north-
ern oceanic environments. Ann. Bot.-Lond. 91, 213–226.

Creed, I.F., Beall, F.D., 2009. Distributed topographic indicators for predicting nitrogen ex-
port from headwater catchments. Water Resour. Res. 45, W10407.

Creed, I.F., Sass, G.Z., 2011. Digital terrain analysis approaches for tracking hydrological
and biogeochemical pathways and processes in forested landscapes. In: Levia, D.,
Carlyle-Moses, D., Tanaka, T. (Eds.), Forest Hydrology and Biogeochemistry: Synthesis
of Past Research and Future Directions. Springer-Verlag, New York, pp. 69–100.

De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W.,
Antrop, M., De Maeyer, P., Finke, P., et al., 2013. Application of the topographic posi-
tion index to heterogeneous landscapes. Geomorphology 186, 39–49.

Deumlich, D., Schmidt, R., Sommer, M., 2010. A multiscale soil–landform relationship in
the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant
Nutr. Soil Sci. 173, 843–851.

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G.,
Gruber, B., Lafourcade, B., Leitão, P.J., et al., 2013. Collinearity: a review of
methods to deal with it and a simulation study evaluating their performance.
Ecography 36, 027–046.

Emili, L.A., Price, J.S., Fitzgerald, D.F., 2006. Hydrogeological influences on forest commu-
nity type along forest–peatland complexes in coastal British Columbia. Can. J. For.
Res. 36, 2024–2037.

Environment Canada, 2011. Canadian Climate Normals 1971–2000. Matagami Weather
Station. Available online at http://climate.weather.gc.ca/climate_normals/ (Last
accessed April 2014).

ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute,
Redlands, CA, USA. Available online at http://help.arcgis.com/en/arcgisdesktop/10.0/
help/ (last accessed January 2014).

Fenton, N.J., Bergeron, Y., 2006. Facilitative succession in a boreal bryophyte community
driven by changes in available moisture and light. J. Veg. Sci. 17, 65–76.

Fenton, N., Lecomte, N., Légaré, S., Bergeron, Y., 2005. Paludification in black spruce (Picea
mariana) forests of eastern Canada: potential factors and management implications.
For. Ecol. Manag. 213, 151–159.

Fenton, N.J., Simard, M., Bergeron, Y., 2009. Emulating natural disturbances: the role of
silviculture in creating even-aged and complex structures in the black spruce boreal
forest of eastern North America. J. For. Res. 14, 258–267.

Gorozhankina, S.M., 1997. Paludification in the Tsentral'no-Sibirskii Biosphere Reserve
(the Yenisei region of Siberia). Russ. J. Ecol. 28, 67–72.

Jenness, J., Majka, D., Beier, P., 2011. Corridor Designer Evaluation Tools: Extension
for ArcGIS. Jenness Enterprises, Flagstaff, AZ, USA, (Available at: http://www.
jennessent.com/arcgis/corridor.htm. Last accessed January 2014).

Laamrani, A., Valeria, O., Cheng, L.-Z., Yves Bergeron, Y., Camerlynck, C., 2013. The use of
ground penetrating radar for remote sensing the organic layer–mineral soil interface
in paludified boreal forests. Can. J. Remote. Sens. 39, 74–88.

Laamrani, A., Valeria, O., Fenton, N., Bergeron, Y., 2014a. Landscape−scale influence of to-
pography on organic layer accumulation in paludified boreal forests. For. Sci. 60,
579–590. http://dx.doi.org/10.5849/forsci.13-025 (Available online).

Laamrani, A., Valeria, O., Fenton, N., Bergeron, Y., Cheng, L.Z., 2014b. The role of mineral
soil topography on the spatial distribution of organic layer thickness in a paludified
boreal landscape. Geoderma 221–222, 70–78. http://dx.doi.org/10.1016/j.geoderma.
2014.01.003.

Laamrani, A., Valeria, O., Fenton, N., Bergeron, Y., Cheng, L.Z., 2014c. Effects of topography
and thickness of organic layer on productivity of black spruce boreal forests of the Ca-
nadian Clay Belt region. For. Ecol. Manag. 330, 144–157. http://dx.doi.org/10.1016/j.
foreco.2014.07.013.

http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0005
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0005
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0010
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0010
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0010
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0015
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0015
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0015
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0020
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0020
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0025
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0025
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0030
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0030
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0030
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0030
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0035
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0035
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0040
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0040
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0040
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0045
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0045
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0045
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0050
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0050
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0050
http://climate.weather.gc.ca/climate_normals/
http://help.arcgis.com/en/arcgisdesktop/10.0/help/
http://help.arcgis.com/en/arcgisdesktop/10.0/help/
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0065
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0065
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0070
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0070
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0070
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0075
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0075
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0075
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0080
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0080
http://www.jennessent.com/arcgis/corridor.htm
http://www.jennessent.com/arcgis/corridor.htm
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0090
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0090
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0090
http://dx.doi.org/10.5849/forsci.13-025
http://dx.doi.org/10.1016/j.geoderma.2014.01.003
http://dx.doi.org/10.1016/j.geoderma.2014.01.003
http://dx.doi.org/10.1016/j.foreco.2014.07.013
http://dx.doi.org/10.1016/j.foreco.2014.07.013


97A. Laamrani et al. / Geoderma 237–238 (2015) 88–97
Larocque, I., Bergeron, Y., Campbell, I.D., Bradshaw, R.H.W., 2003. Fire-induced decrease in
forest cover on a small rock outcrop in the Abitibi region of Québec, Canada.
Ecoscience 10, 515–524.

Lavoie, M., Pare, D., Fenton, N., Groot, A., Taylor, K., 2005. Paludification and management
of forested peatlands in Canada: a literature review. Environ. Rev. 13, 21–50.

Lavoie, M., Harper, K., Paré, D., Bergeron, Y., 2007. Spatial pattern in the organic layer and
tree growth: a case study from regenerating Picea mariana stands prone to
paludification. J. Veg. Sci. 18, 213–222.

Lindsay, J.B., Creed, I.F., 2005. Removal of artifact depressions from digital elevation
models: towards a minimum impact approach. Hydrol. Process. 19, 3113–3126.

MacMillan, R.A., Moon, D.E., Coupé, R.A., 2007. Automated predictive ecological mapping
in a forest region of BC, Canada, 2001–2005. Geoderma 140, 353–373.

McKenzie, N.J., Ryan, P.J., 1999. Spatial prediction of topsoil properties using environmental
correlation. Geoderma 89, 67–94.

Moore, I.D., Lewis, A., Gallant, J.C., 1993. Terrain attributes: estimation methods and scale
effects. In: Jakeman, A.J., Beck, M.B., McAleer, M.J. (Eds.), Modelling Change in Envi-
ronmental Systems. Wiley, London, pp. 189–214.

Payette, S., 2001. Les principaux types de tourbières. In: Payette, S., Rochefort, L. (Eds.),
Écologie des tourbières du Québec-Labrador: une perspective nord-américaine.
Presses de l'Université Laval, Québec, QC, pp. 39–89.

R Development Core Team, 2011. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, (URL
http://www.R-project.org/).
Robitaille, A., Saucier, J.-P., 1998. Paysages régionaux du Québec méridional. Les publications
du Québec, Québec, (213 pp.).

Simard, M., Lecomte, N., Bergeron, Y., Bernier, P.Y., Paré, D., 2007. Forest productivity de-
cline caused by successional paludification of boreal soils. Ecol. Appl. 17, 1619–1637.

Simard, M., Bernier, P.Y., Bergeron, Y., Paré, D., Guérine, L., 2009. Paludification dynamics
in the boreal forest of the James Bay Lowlands: effect of time since fire and topogra-
phy. Can. J. For. Res. 39, 546–552.

Sørensen, R., Zinko, U., Seibert, J., 2006. On the calculation of the topographic wetness
index: evaluation of different methods based on field observations. Hydrol. Earth
Syst. Sci. 10, 101–112.

Southee, F.M., Treitz, P.M., Scott, N.A., 2012. Application of LiDAR terrain surfaces for soil
moisture modelling. Photogramm. Eng. Remote Sens. 78, 1241–1251.

Tagil, S., Jenness, J.S., 2008. GIS-based automated landform classification and topographic,
landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. J.
Appl. Sci. 8, 910–921.

Tchir, T.L., Johnson, E.A., Miyanishi, K., 2004. A model of fragmentation in the Canadian
boreal forest. Can. J. For. Res. 34, 2248–2262.

Veillette, J.J., 1994. Evolution and paleohydrology of glacial Lakes Barlow and Ojibway.
Quat. Sci. Rev. 13, 945–971.

Weiss, A.D., 2001. Topographic positions and landforms analysis (Conference Poster).
ESRI International User Conference, San Diego, CAIndus Corporation, Seattle, WA.

Wilson, J.P., Gallant, J.C., 2000. Secondary topographic attributes. In: Wilson, J.P., Gallant, J.C.
(Eds.), Terrain Analysis: Principles and Applications. Wiley, New York, pp. 87–131.

http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0110
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0110
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0110
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0115
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0115
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0120
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0120
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0120
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0125
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0125
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0130
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0130
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0135
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0135
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0140
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0140
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0140
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0145
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0145
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0145
http://www.R-project.org/
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0155
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0155
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0160
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0160
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0165
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0165
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0165
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0170
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0170
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0170
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0175
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0175
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0180
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0180
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0180
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0185
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0185
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0190
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0190
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0195
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0195
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0200
http://refhub.elsevier.com/S0016-7061(14)00320-6/rf0200

	Distinguishing and mapping permanent and reversible paludified landscapes in Canadian black spruce forests
	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Field Dataset Collection
	2.3. Digital Terrain Model and Derived Topographic Variables
	2.3.1. TPI and Classification
	2.3.2. TWI and Surface Water Movement

	2.4. Assignment of Paludification Types to Topographic Position Classes and Their Validation
	2.5. Statistical Analyses

	3. Results and Discussion
	3.1. Topographic Position Classification
	3.2. Relationship Between Topographic Position Classes and Terrain Attributes
	3.3. Assigning Topographic Position Classes to Paludification Types
	3.3.1. Deep Depression Class
	3.3.2. Lower Slope Depression Class
	3.3.3. Flat Surface Class
	3.3.4. Mid-slope, Upper Slope and Hilltop Classes

	3.4. Topographic Position Classification Performance
	3.5. Validation of the Resulting Maps
	3.6. Forest Management Implications and Paludification Type Assignment

	4. Conclusions
	Acknowledgements
	References


