
Vegetation and topography interact with weather
to drive the spatial distribution of wildfires
in the eastern boreal forest of Canada

Xavier CavardA,C, Jean-François BoucherA and Yves BergeronB
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Abstract. It is crucial to better understand and predict how burnt areas in the boreal forest will evolve under a changing
climate and landscape. The objective of the present studywas to predict burnt areas at several spatial and temporal scales in
the Quebec continuous boreal forest and to compare the influence of weather, vegetation and topographic variables by

including them and their interactions in logistic regressions. At the largest spatial scale (350 km2), the best model
explained 66% of the data variability and was able to predict burnt areas with reasonable accuracy for 11 years (r¼ 0.48).
Weather and vegetation or topographic variables had an equivalent importance, though no single vegetation or

topographic variable was mandatory to the model performance. Interactions between weather and non-weather variables
largely improved the model, particularly when several weather indices were used, as the sign of the interaction with a non-
weather variable could differ between weather indices. Vegetation and topography are therefore important predictors of

fire susceptibility, but risk factors may vary between wind- and drought-driven fire weather. Including at least some
vegetation and topographic variables in statistical models linking burnt areas to weather data can greatly improve their
predictive power.
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Introduction

Wildfires are a natural phenomenon that shape the boreal forest
(Rowe and Scotter 1973). Given the strong impact that they have
on the boreal forest carbon balance (Conard et al. 2002; Balshi

et al. 2007; Bond-Lamberty et al. 2007), their effect is not only
local but also global as theymay positively contribute to climate
change feedback (Flannigan et al. 2005; Amiro et al. 2009).
Improving their predictability under a changing climate and on

an evolving landscape is thus of utmost importance.
Although wildfires are by definition stochastic events that

cannot be predicted individually, some success has been

achieved at larger scales using empirical data and statistical
models; weather variables in particular have proven to be strong
predictors of burnt areas (Flannigan et al. 2005), fire occurrence

(Preisler et al. 2008) and fire behaviour (Hély et al. 2001). The
link between dry weather episodes and wildfire activity is
indeed so strong that it led some scholars to assume that other

variables like fuel and topographic characteristics would com-
paratively be unimportant (Bessie and Johnson 1995; Flannigan
and Wotton 2001). However, Agee (1997) has put the so-called
weather hypothesis into perspective and warned against

generalisation, stating that the balance between weather, topo-

graphic and fuel variables is highly dependent on the study area.
Indeed, Bessie and Johnson (1995) explained the stronger effect
of weather over fuel by the fact that weather variables mani-

fested more variation than fuels in their western subalpine
dataset. It is thus entirely possible that in areas with generally
wetter climate, such as the eastern boreal forest of Canada, the
influence of weather variables may be less predominant. This is

illustrated by the fact that components of the Canadian Fire
Weather Index (FWI) System explain 33% of the variance of the
provincial area burnedmonthly in western Canada but only 12%

in eastern Canada (Harrington et al. 1983). The pattern is
probably more complex though, as in Quebec alone the variance
explained by such weather indices can range from 42% in the

south to 62% in the northernmost part of the province, compared
with 50–60% in the prairies (Flannigan et al. 2005).

Even when weather is the main driver of fire behaviour,

forest composition and structure can have a significant influence
(Hély et al. 2001). In the boreal forest, conifers in particular are
considered better fuel than deciduous species (Hély et al. 2000b;
Cumming 2001). Elevation has been shown to increase the fire
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return interval (McKenzie et al. 2000). However, reputed effects
of fuel and topography have been contradictory. For instance,
topographic roughness has been shown to increase fire return

interval (Stambaugh and Guyette 2008) but also large fire
occurrences (Dickson et al. 2006). Increasing stand density
has also been reported as having both positive (Perry et al.

2004) and negative (Tanskanen et al. 2005) effects on fire
susceptibility. It is unclear whether those apparent contradic-
tions stem from differences in study area or methodology but, as

mentioned above, it is likely that interactions with climate lead
to different effects of non-weather variables. However, their
inclusion in fire predictionmodels appears necessary to take into
account spatial variability in fire spread on finer scales than that

allowed by weather alone (Mansuy et al. 2010).
The present work aims at identifying the respective weights

of weather, topographic and fuel variables on burnt areas in the

eastern Canadian boreal forest, using logistic regressionmodels.
Different spatial and temporal scales are used in order to find the
best compromise between prediction accuracy and precision.

We hypothesise that the inclusion of interaction parameters
between weather and non-weather variables should increase
prediction accuracy.

Materials and methods

Study area

The study area comprised 55 533 km2 of eastern boreal forest in
Quebec (Canada), in the spruce–moss bioclimatic domain. It is

mostly uninhabited (limiting anthropogenic impact on fire
ignition and suppression) and covers four forest management
units of the Saguenay-Lac-Saint-Jean region, spanning

approximately from 488390N to 518280N and from 698490W to
748250W(Fig. 1a). The study period spanned 2000–2010, during
which the four weather stations located directly in the area

recorded mean annual temperatures ranging from – 0.9 to 0.98C,
and mean annual total precipitation from 529.3 to 620.3 mm,
with 30–34% as snow.

The reported average historical fire cycle (last 300 years) in
the region is 247 years (Bélisle et al. 2011), varying spatially
between 128 and 1343 years since 1940 (Mansuy et al. 2010).

Almost 10%of the study area has burnt during the 11 years of the
study period, meaning fire activity has beenmore intense during
this period than what has been historically recorded.

General design

We distinguish between spatially variable and temporally
variable data. Given the limited geographical extent of

the study area, weather variables (top-down controls) mainly
vary temporally. Topographic and vegetation variables
(bottom-up controls) vary across space but mostly stay the
same from year to year, and are hereafter referred to as

spatial variables. Most of these spatial variables were derived
from the third forest inventory conducted by the Quebec
Ministry of Natural Resources from aerial photographs taken

between 1990 and 2000.
Forest inventory data were combined for forest fires larger

than 0.3 ha (Société de protection des forêts contre le feu

(SOPFEU) data) that occurred between 2000 and 2010 inclusive
(Fig. 1b). The original polygons were transformed into 394 361
points (or pixels) that corresponded to squares with side lengths

of 374 m (,14 ha area). This dataset was duplicated 11 times –
once for each year between 2000 and 2010. Each point was
assigned a fire occurrence value (0 v. 1) for each year. No point
had burnt more than once during the study period.

For each year, points were pooled into blocks of various
sizes, the value of each spatial variable in a block being the
average of the values of the points that composed it (only

numerical variables were used). 10� 10 points and 50� 50
points blocks were computed, corresponding to areas of
,14 km2 and 350 km2 respectively (Fig. 2 top). Each year

and block were then allocated weather variables through inverse
distance weighting interpolation (see section Weather

variables).

(a) (b)

100 Km0

Fig. 1. Study area (a) within Quebec and (b) detail. Lighter areas correspond to water coverage, darker areas to burnt areas between

2000 and 2010.
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Each block had its own set of spatial variables, and was

replicated 11 times with different weather and burnt area values
for each year (Table 1 gives a list of all variables and their
ranges). The burnt areas we used here as a response variable

were integrative of both ignition and fire spread.

Spatial variables

The following variables were retained from forest inventory

data: slope (for the impact of topography on fire spread), stand
density (higher fuel concentration), canopy age (as older stands
may accumulate woody debris), uneven-aged stands (a binary

variable, smaller trees being able to act as ladders for fire to
reach the canopy), Cladonia presence (also a binary variable,
necessary to take into account the potential effect of spruce–
lichen open woodlands in the study area) and water body pres-

ence (binary, vegetation variables for water points were set to 0).
Elevation and distance frommain roads (whichwe qualified as a
topographic variable as at our temporal scale these roads were

fixed in the landscape) were also added to the dataset, elevation
for its microclimatic effect and road distance to account for
anthropogenic influences. Each pixel was also attributed a fuel

type according to the Canadian Wildland Fire Information
System (Pelletier et al. 2009). This system is composed of two
subsystems: the FWI, which models the effect of wind and fuel

moisture on fire behaviour, and the Forest Fire Behaviour Pre-

diction (FBP), which estimates potential head fire spread rate,
fuel consumption and fire intensity. The initial rate of spread
(RSI) from the FBP subsystem was chosen as an integrative

numerical variable representing fuel types. It is defined as the
head fire spread rate on level terrain under equilibrium condi-
tions (Forestry Canada Fire Danger Group 1992). The general

equation for RSI is as follows:

RSI ¼ a� ½1� eð�b�ISIÞ�c

where a, b and c are fuel type-specific parameters in the FBP
system and ISI is the Initial Spread Index (see section Weather

variables). A fixed value of ISI was chosen in order to keep

vegetation and weather variables separate. As the differences in
RSI across fuel types tend to increase as ISI becomes higher, the
chosen ISI was 15, which is in the high range of the daily values

recorded in the area during the study period. This allowed the
computed RSI values to discriminate between fuel types as best
as possible.

When a fire had occurred in a previous year, the fuel type of
the corresponding points was changed to open, and the RSI
recomputed accordingly. The other vegetation variables were

set to 0. Age increase throughout the time period was considered

Individual 10 � 10 blocks

10 � 10 blocks aggregated by 5 10 � 10 blocks aggregated by 25

0 50 100 Kilometres

0 50 100Kilometres

0 50 100Kilometres

0 50 100 Kilometres

Individual 50 � 50 blocks

Fig. 2. Maps of the two block sizes (top) and aggregates of the small blocks (bottom).
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to be negligible given the lack of resolution of age classes in
forest inventory data.

Even though our analyses were aspatial in nature, it was

necessary to account for neighbouring effects. To this end, each
spatial variable was also given alternative values taking into
account the values of that variable in the eight neighbouring

blocks. Fourteen values were computed for each variable: the
base value of the block, the minimum among it and the eight
neighbours, the maximum, and the weighted mean of the target

block and its neighbours, the possible weights of the target block
being 0, 1, 2, 3, 4, 5, 8, 16, 24, 32 and 40.

Weather variables

Daily rainfall, maximum daily temperature, as well as temper-
ature, relative humidity and wind speed measured at 1200 local
standard time (LST) were obtained from 19 weather stations
located in and around the study area, from 2000 to 2010. Those

data were used to compute the components of the Canadian
Forest Weather Index System (Van Wagner 1987). The first-
level components (computed directly from the aforementioned

weather variables) are the Fine FuelMoisture Code (FFMC), the
Duff Moisture Code (DMC) and the Drought Code (DC). These
codes represent the fuel moisture of litter-fine fuels, loosely

compacted surface organic matter-medium fuels and deep-layer
compacted organic matter-large logs respectively. These three
moisture codes andwind speedwere used to compute the ISI and

the Build-up Index (BUI), the first representing rate of spread
without fuel-quantity influence and the second the total fuel
available to a fire. Finally, the ISI and BUI were combined to
compute the FWI, representing potential fire intensity as

energy output rate per unit length of fire front. Those daily
valueswere transformed into annual values in four differentways.

First, either monthly averages or monthly maximums were
computed. Then, for each of these cases, the average or maxi-
mum of monthly values during the fire season (from May to

September in our case) were used. Graphical examinations of
the relationships between weather variables and observed burnt
areas showed no great differences between the different means

of calculation, but a slight advantage to the seasonal average of
monthly maximums, which were thus used in all analyses for
most weather variables. For each year, each blockwas attributed

values for all of these variables using the 12 nearest weather
stations (out of 19) and inverse distance weighting interpolation,
the distance to a station being determined from the centre of

the block.

Statistical analyses

General model structure

All statistical analyses were performed using R software

v2.15.2 (The R Foundation of Statistical Computing, http://cran.
r-project.org/). The model type used in all of the analyses
described below predicted annually burnt area within a block

through success/trial logistic regression. It is similar to regular
logistic regression, using binomial distribution, but the response
variable is not binary, it is a proportion – in our case, the

proportion of burnt pixels in a block. R uses the general linear
model functionwith the syntax family¼ binomial, andweights¼
total number of pixels in a block. The dependant variable was

calculated as the number of burnt pixels in a block for 1 year
divided by the total number of pixels in the same block
(or ‘weight’). Although this kind of analysis accounts for
different block sizes, blocks with less than 80% of themaximum

amount of pixels (100 or 2500 for 10� 10- and 50� 50-pixel
blocks respectively) were excluded from the analyses to avoid

Table 1. List of variables used in the analyses

Values given for weather variables are seasonal averages of monthly maximums (see text for details)

Variable Type Unit Range (min–max)

10� 10 blocks 50� 50 blocks

Rate of Spread Index (RSI) Vegetation NA 0–22.06 5.32–19.45

Tree density (Density) Vegetation % cover 0–72.92 5.56–55.49

Uneven-aged stand (Uneven) Vegetation Binary 0–0.79 0–0.37

Cladonia presence (Cladonia) Vegetation Binary 0–0.67 0–0.27

Canopy age (Age) Vegetation Years 0–125.60 9.38–102.38

Slope (Slope) Topography 8 0–23.33 2.44–16.07

Elevation (Elevation) Topography m 328.8–2021.5 484.2–1692.4

Water body presence (Water) Topography Binary 0–1 0.02–0.63

Distance from main roads (Roads) Topography m 606.2–123739.6 2050.0–115518.0

Temperature (Temp) Weather 8C 22.09–32.06 22.42–31.73

Rainfall (Rain)A Weather mm 7.34–141.92 7.68–141.46

Relative humidity (Humidity)B Weather % 48.72–68.62 48.79–68.36

Wind speed (Wind)C Weather km/h 4.03–14.57 4.20–14.55

Fine Fuel Moisture Code (FFMC) Weather NA 75.31–85.91 75.77–85–73

Duff Moisture Code (DMC) Weather NA 6.85–62.81 7.17–62.37

Drought Code (DC) Weather NA 69.09–478.07 69.79–470.17

Initial Spread Index (ISI) Weather NA 2.30–6.76 2.32–6.62

Build-up Index (BUI) Weather NA 10.76–90.74 11.29–90.15

Fire Weather Index (FWI) Weather NA 2.39–16.31 2.53–16.11

ASeasonal averages of monthly totals. BSeasonal averages of monthly minimums. CSeasonal averages of monthly averages.
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an artificial variability in the response area burnt (as it is more
likely that a smaller block burns entirely). This had the advan-
tage of removing blocks on the edge of the map, whose

neighbours were partly unknown. No pair of spatial variables
were correlated with each other at more than r¼ 0.61. All
variables were centred and scaled so as to be confined within

�100 with a mean of 0.

Weather variable selection

A first set of simplemodelswas designed in order to select the
proper weather variables. The different levels from the FWI

components are derived fromone another and are thus redundant,
correlated and mutually exclusive in a model. Hence, one set of
weather variables had to be selected among the following

combinations: (1) rainfall, humidity, wind speed and maximum
daily temperature; (2) FFMC,DMCandDC; (3) ISI andBUI; and
(4) FWI. Four models were fitted using each of these combina-

tions as independent variables. Those four models were com-
pared using the corrected Akaike Information Criterion (AICc),
which is a relativemeasure of goodness of fit (lower AICc values

meaning better fit) but also takes into account the trade off
between accuracy and complexity, allowing the most parsimoni-
ous models to be selected (Burnham and Anderson 2002).

Model comparison

The global or fullmodelwas then constructed from the best set
of weather variables, and adding all nine spatial variables: RSI,
density, age, uneven-aged, Cladonia presence, slope, elevation,

road distance andwater presence. Interactions between all spatial
variables and eachweather variable were also included to test our
main hypothesis, as well as pairwise interactions among the

selected weather variables. The following interactions among
spatial variableswere also added:RSI� density,RSI�Cladonia

and density�Cladonia to test for the influence of dry lichen-

covered open woodlands, and RSI� uneven, RSI� age, age�
uneven to test for the influence of vertical structure (hereafter
named structure interactions). The 18 different versions of each
spatial variable (giving more or less weight to neighbouring

blocks) were tested successively and the ones providing the best
fit according to AICc in the global model were kept. AICc was
then used to assess the relative importance of all variables, groups

of variables and interactions. For each variable, one model was
built fromwhich this variable and all associated interactionswere
excluded.DAICc relative to the global model (the best one in our

case) provided a measure of the importance of the excluded
variable. The same was done for groups of variables (weather,
vegetation and topography) and their interactions.

A subset of the dataset with only relatively high yearly FWI
values (.10) was also used in order to identify any potential
breakpoint after which the effects of spatial variables would
change, and whether spatial variable influence would decrease

in importancewhenweather conditions aremore fire-prone. The
threshold of 10 was the highest that could be used without
reducing too much the number of observations compared with

the number of parameters in the model.

Model validation

In order to assess the performance of the model outside of the
data used to calibrate it, predictions were generated through

cross-validation. Yearly burnt areas of each block were pre-
dicted by a model that was fitted on all observations, excluding
those stemming from the same block or the same year as the one

to be predicted (jackknife method). Root Mean Square Errors
(RMSE) between observed and predicted values were computed
with values fitted by the model on the one hand and predictions

generated through cross-validation on the other hand. In the
10� 10-pixel configuration, blocks were regrouped according
to the large 50� 50-pixel block they were in, and the 25 small

blocks thus regrouped were excluded from the model that
predicted burnt areas in each of them. This allowed us to assess
prediction accuracy on various sizes of 10� 10 block aggre-
gates (1, 5 and 25 blocks, 25 10� 10 blocks being the equivalent

of one 50� 50 block, see Fig. 2) without modifying the number
of observations available to fit the model.

Individual effects of variables

To help assess the effects of individual vegetation variables,
predictions were computed with an increase in BUI (ISI being
fixed to an average value), ISI (BUI being fixed to an average

value) or both.When both ISI and BUI were increased, a ratio of
BUI/ISI¼ 8 was chosen, which allowed ISI and BUI to reach
their median and 3rd quartile values together (highest BUI

values were considerably rarer than ISI ones). Given the
multiplicity of combinations available for vegetation values,
four hypothetical 50� 50-pixel blocks were chosen to run
those predictions: ‘black spruce’ was defined as RSI¼ 22.3,

density¼ 50, age¼ 60, uneven¼ 0 and Cladonia¼ 0; ‘mixed
spruce – deciduous’ as RSI¼ 11.57, density¼ 50, age¼ 60,
uneven¼ 0 andCladonia¼ 0; ‘heath’ asRSI¼ 14.27, density¼ 0,

age¼ 0, uneven¼ 0 andCladonia¼ 0; and ‘spruce–lichen open
woodland’ as RSI¼ 10.64, density¼ 18, age¼ 80, uneven¼ 0
and Cladonia¼ 0.3. These values were chosen to reflect the

general vegetation type, whereas topographic variables were
given average values: slope¼ 9.9, elevation¼ 1000, roads¼
23 000, except for water presence, whichwas set to 0. The ‘black

spruce’ and ‘mixed’ staples were then kept to test the effect of
density, age, uneven and Cladonia. Values for those variables
were chosen so that they would be as different as possible while
remaining within the 1st and 3rd quartiles of their distribution.

The same principle was applied to test for the effects of
topographic variables, values of variables other than the one
shown in that case being: RSI¼ 15, density¼ 30, age¼ 60,

uneven¼ 0,Cladonia¼ 0, slope¼ 9.9, elevation¼ 1000, roads¼
23 000 and water¼ 0. These corresponded to mean values,
rounded to 0 when very low.

Results

Weather variables selection

The best set of weather variables differed depending on the
spatial scale used: the ISI þ BUI combination was best for

10� 10 blocks, whereas the FFMCþDMCþDC combination
was best for 50� 50 blocks (Table 2). However, the ISI þ BUI
combination was still second best for the 50� 50 scale. In order

to avoid burdening themodel with toomany parameters (as each
weather variable interacts with each spatial variable) and to
facilitate comparisons between spatial scales, the ISIþ BUI set
of weather variables was chosen for both scales. For both spatial
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scales, the Temperature þ Humidity þ Rain þ Wind combi-
nation was third in order of performance, whereas the models

using a single weather variable (the FWI) were the worst ones
(Table 2).

Neighbouring effects on spatial variables

Depending on block size, the best formula to account for
neighbours changed for each variable (Appendix 1). For the
10� 10-pixel blocks, neighbours always had to be accounted
for, and the value of the block itself was negligible for slope and

Cladonia presence. For 50� 50-pixel blocks, the influence of
the block value was negligible for the distance from roads and
uneven-aged stand variables, but the values of neighbours were

negligible for RSI and Cladonia presence.

Explanatory power of variables

A large majority of the global model parameters had a statisti-

cally significant effect for both block sizes (Appendix 2). The
global model accounted for 45% of the total deviance of the
dataset for 10� 10-pixel blocks, and 66% for 50� 50-pixel
blocks. By DAICc, removal of all weather or spatial variables

had an equivalent effect on model performance, and removal of
interactions between weather and spatial variables had a nega-

tive effect equivalent to removing either ISI or BUI (Table 3).
Removal of vegetation or topographic variable groups had a
similar impact, whereas interactions between spatial variables

were of comparatively little importance. For 10� 10-pixel
blocks, the most important single variables were (in decreasing
order): BUI, ISI, elevation, water, RSI, density, roads, age,

Cladonia, uneven and slope. For 50� 50-pixel blocks, these
were: BUI, ISI, RSI, density, water, uneven, elevation, age,
slope, Cladonia and roads.

Sequential removal of spatial variables (in their order of

importance for 10� 10 blocks) showed that globally, the effect
of removing a given spatial variable increased when other
spatial variables had already been removed, with the notable

exception of water presence, for both block sizes (Table 4).
When a subset of the dataset in drier conditions (FWI. 10)

was used, the impact of spatial variables decreased to half that of

weather variables, but total weather� spatial variable interac-
tions remained at a similar level compared with weather vari-
ables (Appendix 3). Water presence notably became the most
important spatial variable for both block sizes.

Table 2. Model selection for weather variables

The best model has a difference in corrected Akaike Information Criterion (AICc) of 0

Model AICc DAICc

10� 10 blocks 50� 50 blocks 10� 10 blocks 50� 50 blocks

Temperature þ Rain þ Humidity þ Wind 316 287.7 201 241.2 2679.03 6038.11

FFMC þ DMC þ DC 313 952.4 195 203.1 343.74 0

ISI þ BUI 313 608.6 197 237.3 0 2034.25

FWI 324 213.5 208 259.3 10 604.89 13 056.24

Table 3. Explicative power of each variable and group of variables

A higher difference in corrected Akaike Information Criterion (AICc) means a more important variable, see text for details

Model AICc DAICc

10� 10 blocks 50� 50 blocks 10� 10 blocks 50� 50 blocks

Global 193 607.1 79 147.18 0 0

No Weather 309 400.7 193 322.55 115 793.60 114 175.37

No Spatial 300 359.3 192 201.43 106 752.18 113 054.25

No Vegetation 248 058.2 125 193.59 54 451.10 46 046.41

No Topography 253 674.2 116 873.44 60 067.06 37 726.26

No Weather�Spatial 253 772.8 142 492.83 60 165.72 63 345.65

No Open woodlands interactions 196 450.2 –A 28 43.10 –A

No Structure interactions 194 034.9 86 418.54 427.82 7271.36

No ISI 242 337.7 130 824.68 48 730.59 51 677.50

No BUI 255 902.0 147 172.67 62 294.88 68 025.48

No RSI 207 408.6 92 841.21 13 801.53 13 694.03

No Density 206 740.7 89 826.08 13 133.59 10 678.89

No Uneven 195 515.7 88 235.99 1908.56 9088.81

No Cladonia 196 817.8 82 065.96 3210.70 2918.78

No Age 197 292.5 86 381.88 3685.42 7234.70

No Slope 193 975.0 86 079.78 367.92 6932.60

No Elevation 214 154.5 87 276.64 20 547.35 8129.46

No Water 209 824.8 89 453.30 16 217.65 10 306.12

No Roads 200 018.2 79 876.28 6411.13 729.10

AModel failed to converge.
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Prediction accuracy v. precision

Correspondence between observed and predicted burnt pro-
portions was poor for the smallest blocks, but increased by
aggregating predictions on larger spatial scales (Fig. 3a–c).
When the model was directly fitted on larger 50� 50-pixel

blocks, prediction accuracy did not appear very different from
the 10� 10 block predictions aggregated on the same

scale (Fig. 3c–d). Furthermore, whereas autocorrelation of the
model residuals did not appear to be a problem for the largest
blocks (equal to 0.2 for adjacent observations), it was much

Table 4. Explicative power of each spatial variable when they are removed sequentially from the global model

AICc, corrected Akaike Information Criterion

Model No. of spatial variables AICc DAICc Variable impact

10� 10 blocks 50� 50 blocks 10� 10 blocks 50� 50 blocks 10� 10 blocks 50� 50 blocks

Global 9 193 607.1 79 147.18 0 0 0 0

‘–Slope’ 8 193 975.0 86 079.78 367.92 6932.60 367.90 6932.60

‘–Uneven’ 7 196 264.2 96 140.2 2657.06 16 993.02 2289.20 10 060.42

‘–Cladonia’ 6 199 804.0 99 660.45 6196.87 20 513.27 3539.80 3520.25

‘–Age’ 5 204 763.7 103 338.99 11 156.62 24 191.81 4959.70 3678.54

‘–Road’ 4 219 050.2 113 692.14 25 443.14 34 544.96 14 286.50 10 353.15

‘–Density’ 3 239 374.4 129 112.15 45 767.29 49 964.97 20 324.20 15 420.01

‘–RSI’ 2 272 289.5 149 877.52 78 682.39 70 730.34 32 915.10 20 765.37

‘–Water’ 1 273 507.1 150 322.95 79 899.96 71 175.76 1217.60 445.43

‘–Elevation’ 0 309 400.7 193 322.55 115 793.60 114 175.37 35 893.60 42 999.60
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Fig. 3. Predicted v. observed proportions of burnt areas of each block from 2000 to 2010 for different spatial scales: (a) 10� 10-

pixel blocks; (b) 10� 10-pixel block aggregated by lines of five blocks; (c) 10� 10-pixel blocks aggregated by squares of 25 blocks;

and (d) 50� 50-pixel blocks.
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more pronounced for the small blocks (0.65 for adjacent
observations). Hence, only 50� 50 blocks were used for later
predictions (Fig. 4) and analyses, given the lower amount of

processing they required. Different temporal scales appeared
to greatly affect prediction accuracy for 50� 50 blocks, with
extremely poor correspondence between yearly observed and

predicted burnt areas, but average accuracy when predictions
were pooled over 11 years (Fig. 5). RMSE for 10� 10 blocks
were equal to 0.066 for fitted values and 0.069 for predicted
values. For 50� 50 blocks, RMSE were 0.036 for fitted values

and 0.078 for values predicted through cross validation.

Individual effects of variables

Given the large number of interactions in the global model, the
effect of one given variable is difficult to assess, especiallywhen

vegetation variables are involved, as they not only interact with
weather variables but also among themselves. Furthermore,
some spatial variables can have a positive interactionwith one of

the weather variables and a negative interaction with other
variables (Appendix 2), meaning that the same spatial variable
can have a positive or a negative effect on predicted burnt areas

depending on the BUI/ISI ratio.
According to themodel, spruce–lichen openwoodlands were

more fire prone than closed spruce forests (Fig. 6a). This was
also the case for open heathlands, except under themost extreme

fire weather conditions (Fig. 6a). Finally, mixed spruce–
deciduous forests appeared less fire prone (Fig. 6a). Closed
spruce and open spruce–lichen woodlands seemed to burn more

when ISI was high (Fig. 6b), whereas open heathlands and
mixed forests were more dependent on a high BUI (Fig. 6c).

Mean annual percentage burnt

Observed Predicted

0 50 100 Kilometres 0 50 100 Kilometres

0 50 100 Kilometres0 50 100 Kilometres

0–0.8 %
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10.1–20 %

Mean annual percentage burnt

0–0.5 %

0.6–1.5 %
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Mean annual percentage burnt
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Fig. 4. Maps of observed (left column) and predicted (right column)mean annual burnt areas between 2000 and 2010 for 10� 10 (first line) and

50� 50 blocks (second line).
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The stem density effect on burnt area predictions was highly
dependent on RSI values: it was positive on spruce stands (high
RSI) but negative on mixed stands (low RSI; Fig. 7a). Age had a

slight negative effect in both cases (Fig. 7b). Uneven-aged
stands, in contrast, had a slight positive effect on predicted
burnt areas in spruce stands and a large positive effect in mixed
stands (Fig. 7c). Cladonia presence had a positive effect on

predictions when RSI was high, but a negative effect when RSI
was lower (Fig. 7d ).

Elevation had a negative effect on predictions with increas-

ing ISI but a positive effect with increasing BUI (Fig. 8a). Slope
had a negative effect in both cases (Fig. 8b). Distance frommain
roads had a positive effect under high ISI but a negative effect

under high BUI (Fig. 8c). Finally, the effect of water body
presence was negative overall but positive when ISI was near its
maximum (Fig. 8d ).

Discussion

Model performance and scales

It has previously been established that regressionmodels such as
those used here can achieve acceptable levels of prediction
accuracy on burnt areas or fire occurrence (Flannigan et al.

2005; Gonzalez et al. 2006; Krawchuk et al. 2006; Chuvieco
et al. 2009; Bisquert et al. 2011). The best performance here was
obtained at the largest spatial scale (350 km2), where the model

was globally able to identify high and low fire-risk areas.
The main drawback of empirical models is the dependency

on the dataset used to build the model. It is not expected that the
parameters calibrated for a specific region would allow for good

prediction in an entirely different area. However, our methodol-
ogy should still perform well if applied, for instance, to predict
future burnt areas under a changing climate in a region where

terrain features and past fire activity are known, or to test the
effects of moderate changes in vegetation features.

The effect of spatial scales on prediction accuracy was

unsurprising given the nature of the method we used. Even
though wildfire spread is also controlled by finer-scale processes
(Cyr et al. 2007; Falk et al. 2007), our smallest blocks did not
reach the size at which such processes may have become

apparent (Parks et al. 2011). Hence, our method is more adapted
to a coarse spatial resolution. This is emphasised by the fact that
taking surrounding blocks into account for the values of most

spatial variables improved model performance even at the
350 km2-block scale. Besides the required computing power
and lower accuracy, the smaller blocks also had the drawback of
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being more spatially correlated, requiring further complexity of

themodel to take the spatial structure into account. The very low
accuracy of the model when predicting yearly burnt areas on the
largest blocks may be explained by the fact that among the 11

years of the study period, only 3 years saw significant areas
burnt. Hence, removing one of these 3 years during the cross-
validation drastically affected the predictive performance of the
model. This is emphasised by the difference in RMSE between

fitted and predicted values at this scale (0.036 v. 0.078), which
was lower if all years where used during the cross-validation
(0.036 v. 0.051, not shown). This effect was fortunately offset by

aggregating predictions on a larger temporal scale, probably
because it averaged weather variations and put more emphasis
on the blocks that were generally more susceptible to fire, due to

their vegetation and topographic characteristics. It is unclear
though why such an effect was not apparent for the smallest
blocks. In any case, this result shows that the model may be
greatly improved by adding more fire years in the dataset,

provided those and the corresponding vegetation data are
available. In addition, aggregating predictions over a time

period much longer than 11 years might also produce signifi-

cantly more accurate predictions.

Weather influence v. vegetation and topography

Weather and spatial variables played an equivalent role in
explaining the spatial variation in proportions of area burnt.
Although it would be tempting to attribute this result to the less

fire-prone climate of the eastern boreal forest of Canada com-
pared with its western counterpart, Krawchuk et al. (2006) did
find similar results in Alberta, and observed that the influence of

forest composition was even stronger with more severe fire
weather. Other studies have shown the importance of vegetation
(Parisien et al. 2011) and topography (Kennedy and McKenzie

2010) in explaining the spatial distribution of wildfires. Thus,
forest and topographic heterogeneity v. homogeneity would be
the main factor influencing the balance between top-down and
bottom-up controls in a landscape, explaining the lack of vege-

tation effect in some studies (Bessie and Johnson 1995).
Although our results from a more fire-prone subset of the data
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still suggest a decreased influence of non-weather variables

under more intense fire weather, there were too few episodes of
such intense fire weather in our study area to really proceed to
such analyses – the FWI threshold of 10 that we used to define

the subset not being all that high. Althoughwe are unable to shed
any conclusive light on this issue, we have been able to show the
importance of interactions between weather and spatial vari-

ables, which is as expected as terrain and vegetation features are
insignificant to fire risk without suitable weather. Even more
interesting is the fact that several weather variables always

performed better than a single weather variable, and that some
spatial variables had interaction parameters of opposite signs
between the ISI and the BUI. Provided that this is not merely an
artefact of the model, it could suggest that ‘intense fire weather’

can actually encompass varied meteorological conditions, each
of which favours the burning of different vegetation and
topography.

Among the spatial variables, none was individually as
important as ISI or BUI were to the model goodness of fit.
Sequential removal of spatial variables showed that the fewer

the number of spatial variables in the model, the more statistical

weight each one had. This redundancy between spatial variables

means that none of them was essential to the method we used,
and thus that it could probably be replicated elsewhere with
similar success, with whatever vegetation and topographic data

are available. Water presence is the notable exception, in that it
was mostly useless to the model when most other spatial
variables had already been removed.

Effects of individual spatial variables

Every spatial variable in our model interacted significantly with
both ISI and BUI, and vegetation variables showed interactions
among themselves. Their effects must thus be understood in
relation to those other variables. This is particularly true for RSI,

which interacted with all of the other vegetation variables. This
was necessary as a given RSI value can represent different
vegetation types – spruce–lichen forest, heathlands and mixed

forests can all have similar RSI values, for instance. By com-
bining RSI with other variables, particularly tree density, we
hoped to allow for better discrimination between vegetation

types. Similar RSI valueswere thus able to correspond to either a
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mixed spruce–deciduous forest or a spruce–lichen open wood-
land, with contrasting model predictions. It appeared that for
high densities, a lower RSI – corresponding to an increased

proportion of deciduous forest – would decrease predicted burnt
areas. This is in accordance with many previous results stating
the lower fire susceptibility of deciduous species compared with

conifers (Hély et al. 2000b; Cumming 2001; Bergeron et al.

2004). In contrast, very low densities combined with medium or
low RSI (heath and spruce–lichen woodland) led to a higher

proportion of predicted burnt areas for ISI values below 6. The
fact that open forest stands would require less-intense fire
weather than closed-canopy forests in order to burn is not sur-
prising as the burnt areas being predicted here were the result of

fire ignition and spread, not fire intensity or severity; hence, the
flammability was arguably of more importance than the amount
of fuel. Closed canopies can create a shady and moist micro-

climate that decreases ignition success (Tanskanen et al. 2005).
However, this doesn’t explain why coniferous stands relied on a
high ISI to burn and mixed woods depended on a high BUI.

High BUI values are associated with prolonged droughts and
late-summer conditions, and thus to the ‘leaf-out’ period of
deciduous trees, which is assumed to decrease rate of spread

(Forestry Canada Fire Danger Group 1992). Thus, a contrary
result was expected. The dependence of open heathlands on high
BUI values is easier to explain as the flammability of such fuel
heavily relies on its degree of curing, which is dependent on

rainfall (Luke and McArthur 1978; Brown et al. 1989).
Tree density appeared to have a positive effect on fire

susceptibility for coniferous stands, but a negative effect when

RSI was lower (such as from the inclusion of broadleaved
species), suggesting that higher fuel availability increased
susceptibility to fire only when it was easily flammable. More

surprisingly, upper canopy age had a negative effect on fire
susceptibility in both cases, which is contradictory to the
accumulation of dead material in unmanaged forest over time
(Van Wagner 1983; Barrett et al. 1991; Agee 1993; Hély et al.

2000a). However, old boreal stands tend to develop thick and
moist organic layers (Crawford et al. 2003). This effect was
weak, so it is also possible that mean age in 350-km2 blocks did

not vary enough to detect a proper influence of canopy age. Of
more importance was the proportion of uneven-aged stands in a
block, which had a slight positive effect in the case of coniferous

stands but a much greater effect for mixed woods. Indeed,
subcanopies in mixed deciduous–coniferous stands of the east-
ern boreal forest are generally composed of late-successional

conifers (Bergeron 2000; Chen and Popadiouk 2002), which
may act as a bridge for a surface fire to reach the canopy (Van
Wagner 1977) and will greatly increase the flammability of
mixed stands. Themodel also attributed a positive impact on fire

susceptibility to the presence of Cladonia-type lichens, which
have been classified as fuels of intermediate flammability
(Sylvester and Wein 1981), but only in coniferous stands. The

negative impact of lichens in spruce–deciduous mixed stands
may have no physical meaning, as lichens were seldom found in
such forests in our dataset.

Including several weather variables and their interactions led
to some interesting behaviour from our model, such as the
contrasting effects of elevation and distance from main roads
on fire susceptibility, depending on which weather index was

dominating. Nothing proves at this stage that the inversion of the
effect of spatial variables with changing weather variables
values is not a mere artefact from the model construction. These

could however lead to interesting hypotheses to be investigated
in future studies, such as risk factors not being the same when
strong winds are frequent but only fine fuels would be dried

(high ISI and medium BUI, a situation more common in spring
and early summer) or when strong winds are infrequent but
prolonged drought would have increased the range of flammable

fuels (high BUI and medium ISI, more common from mid- to
late summer in our dataset).

Conclusion

Statistical models had been shown to predict burnt areas at the

ecozone scale using only FWI (Flannigan et al. 2005). The
inclusion of vegetation and topographic variables in logistic
regressions, and their interaction with FWI, allowed such

models to identify burnt areas of 350-km2 blocks over 11 years
with reasonable accuracy. Such models are limited in scope as
their performance decreases dramatically when they are forced

to extrapolate outside the range of the data that were used to
build them, but the method is flexible enough that it could be
used on other large areas for which some degree of topographic,

vegetation and possibly anthropogenic characteristics are
known. The large scale on which it operates means its primary
use may be in determining future evolution of burnt areas when
both climate and vegetation cover evolve.

Examination of the model behaviour could lead to several
interesting research avenues, if only to confirm the impact of
individual variables. Most notably, the balance between ISI and

BUI affecting the influence of some variables is worth investi-
gating further, in order to determine whether this has any real
physical grounding and, if it has, how different kinds of intense

fire weather (driven by wind v. drought) would interact with
topographic and vegetation features. The method itself could of
course be improved, especially by looking for a better balance

between precision and accuracy, refining the way the neigh-
bouring effects are taken into account, and using datasets
expanded over space or time.
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Appendix 1. Best formula to account for neighbours, for each spatial

variable

Variable Formula or weight of block value

if weighted mean

10� 10 blocks 50� 50 blocks

Rate of Spread Index (RSI) 2 Block value

Tree density (Density) Minimum value 16

Uneven aged stand (Uneven) Maximum value 0

Cladonia presence (Cladonia) 0 Block value

Canopy age (Age) Minimum value Minimum value

Slope (Slope) 0 8

Elevation (Elevation) 4 3

Water body presence (Water) 16 8

Distance from main roads (Roads) Maximum value 0

Appendix 2. Parameter estimates of the global model

Parameter Estimate P-value

10� 10

blocks

50� 50

blocks

10� 10

blocks

50� 50

blocks

RSI �2.313e�01 �2.549e�01 ,2e�16 ,2e�16

Slope �8.871e�02 �4.494e�01 ,2e�16 ,2e�16

Density �1.123e�01 �1.075e�01 ,2e�16 ,2e�16

Road 6.269e�03 �8.516e�06 ,2e�16 1.68e�11

Elevation �1.126e�02 �4.726e�03 ,2e�16 ,2e�16

Water �1.097eþ01 �3.210eþ01 ,2e�16 ,2e�16

Uneven �3.295eþ00 �3.602eþ00 ,2e�16 2.63e�12

Cladonia �4.136eþ00 �6.490eþ00 ,2e�16 ,2e�16

Age 2.063e�02 �1.725e�02 ,2e�16 ,2e�16

BUI 9.221e�02 1.122e�01 ,2e�16 ,2e�16

ISI 1.711eþ00 2.249eþ00 ,2e�16 ,2e�16

BUI� ISI �2.666e�03 4.387e�02 0.000324 ,2e�16

RSI�Density 2.471e�02 2.000e�02 ,2e�16 ,2e�16

RSI�Uneven 1.040e�01 6.584eþ00 2.67e�07 ,2e�16

RSI�Cladonia �2.819e�01 3.765eþ00 8.69e�12 ,2e�16

RSI�Age �4.017e�03 �2.869e�02 ,2e�16 ,2e�16

Density�Cladonia �1.868e�01 �9.348e�01 ,2e�16 ,2e�16

Uneven�Age 2.294e�02 2.372e�01 ,2e�16 ,2e�16

Slope� ISI 6.283e�02 8.812e�02 ,2e�16 ,2e�16

Density� ISI 1.600e�02 3.193e�03 9.09e�15 0.0645

RSI� ISI 2.050e�01 2.498e�01 ,2e�16 ,2e�16

Road� ISI 1.171e�02 7.278e�06 ,2e�16 3.08e�15

Elevation� ISI �4.752e�04 2.853e�03 0.117883 ,2e�16

Water� ISI 2.892eþ00 1.955eþ01 ,2e�16 ,2e�16

Uneven� ISI 2.692eþ00 1.161eþ01 ,2e�16 ,2e�16

Cladonia� ISI 7.395eþ00 8.979eþ00 ,2e�16 ,2e�16

Age� ISI �1.412e�02 8.673e�03 ,2e�16 ,2e�16

Slope�BUI 9.502e�04 2.692e�03 2.84e�05 1.12e�10

Density�BUI �2.682e�03 1.224e�03 ,2e�16 ,2e�16

RSI�BUI �1.192e�02 �1.954e�02 ,2e�16 ,2e�16

Road�BUI �1.649e�03 �8.712e�07 ,2e�16 ,2e�16

Elevation�BUI 1.768e�03 2.646e�04 ,2e�16 ,2e�16

Water�BUI �1.858e�01 �5.499e�01 ,2e�16 ,2e�16

Uneven�BUI 6.800e�02 4.642e�01 ,2e�16 ,2e�16

Cladonia�BUI �1.896e�02 �3.291e�01 0.002347 ,2e�16

Age�BUI 1.290e�03 �1.093e�03 ,2e�16 ,2e�16

Appendix 3. Explicative power of each variable and group of variables

when FWI.10 (higherDAICcmeansmore important variable, see text

for details)

AICc, corrected Akaike Information Criterion

Model AICc DAICc

10� 10

blocks

50� 50

blocks

10� 10

blocks

50� 50

blocks

Global 72 955.97 31 072.73 0 0

No Weather 113 170.86 91 837.13 40 214.89 60 764.40

No Spatial 98 987.45 59 285.17 26 031.47 28 212.43

No Vegetation 102 678.04 63 559.60 29 722.07 32 486.87

No Topography 85 493.85 57 335.17 12 537.87 26 262.44

No Weather�Spatial 89 399.23 56 717.80 16 443.25 25 645.07

No Open woodlands

interactions

73 387.53 33 826.51 431.55 2753.78

No Structure interactions 73 167.98 31 605.34 212.01 532.61

No ISI 86 944.09 44 353.28 13 988.12 13 280.55

No BUI 78 655.02 40 791.19 5699.04 9718.46

No RSI 79 155.29 39 039.09 6199.32 7966.36

No Density 79 631.58 32 106.14 6675.60 1033.41

No Uneven 74 911.86 41 572.56 1955.88 10 499.83

No Cladonia 73 870.40 34 804.46 914.42 3731.73

No Age 76 578.85 34 362.41 3622.88 3289.68

No Slope 73 118.28 40 144.99 162.30 9072.26

No Elevation 74 751.79 34 177.16 1795.81 3104.43

No Water 81 779.58 44 329.80 8823.61 13 257.07

No Roads 74 165.30 32 773.85 1209.33 1701.12
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