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ABSTRACT: Understanding fire regime dynamics is central to predicting forest structure and the compositional
dynamics of boreal forests. Spatial and temporal variations in fire frequency in central Canadian boreal forests over
the last 10 000 years were examined to evaluate the influence of bottom-up controls on the regional fire regime.
We analysed macroscopic charcoal larger than 160mm from sediment cores from six lakes to reconstruct fire
history and performed GIS analysis of regional landscape features to investigate how fire frequency has changed
temporally and how non-climatic factors may have affected long-term fire frequency. Our generalized linear mixed
model revealed that temporal changes in fire return intervals (FRIs) were highly dependent on landscape
connectivity as inferred through the abundance of natural firebreaks in the form of open water lakes and wetlands.
FRIs did not change significantly among highly connected landscapes throughout the Holocene; in contrast, FRIs
were significantly longer among poorly connected landscapes in the early Holocene (10–5 cal ka BP), suggesting
that the abundant regional firebreaks limited fire spread. All sites had similar FRIs in the late Holocene. The
diminishing influence of firebreaks suggests that the regional climate during the late Holocene has overshadowed
the influences of the bottom-up controls on fire activities. Copyright © 2015 John Wiley & Sons, Ltd.
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Introduction

Fire is a widespread and key disturbance in many terrestrial
ecosystems (Bond and Keeley, 2005; Bowman et al., 2009).
In boreal forests, naturally occurring fire is a primary driver
of ecosystem dynamics (Weber and Flannigan, 1997; Ryan,
2002; Clemmensen et al., 2013). For several decades, forest
fires have been increasing in frequency (Kelly et al., 2013)
and size and severity (Kasischke and Turetsky, 2006) in
response to ongoing climate change. The potential impacts
of altered fire regimes on ecosystem structure and function
have driven investigations into the causes and consequen-
ces of future changes in fire activity for ecosystems and
natural resources management (Littell et al., 2009; Ali
et al., 2012).
Climatic factors are considered the predominant top-down

control of boreal fire regimes (Johnson, 1992; Power et al.,
2008; Marlon et al., 2009), influencing fire at a broad scale
(Fauria and Johnson, 2008) by creating a latitudinal gradient
in the severity of fire weather conditions, thereby affecting
the length of the fire season and proportion of flammable
vegetation. Following the end of the Earth’s latest ice age, the
planet entered an interglacial period known as the Holocene,
the warmest portion of which in the central boreal zone of
Canada prevailed from about 12 to �5.5 ka BP after which
there was a general progression towards a cooler and moister
climate (Viau et al., 2006; Viau and Gajewski, 2009). Several
paleofire records (Ali et al., 2009a; Kelly et al., 2013; Senici
et al., 2013) from North American boreal forests indicate
significant fire frequency changes concurrent with climate
cooling trends in the late Holocene, and that the direction
and magnitude of such changes differ between regions. Fire
frequency has decreased in some eastern coniferous boreal
forests (Ali et al., 2009a; H�ely et al., 2010) due to reduced

fire season length, and increased in some eastern mixedwood
(Carcaillet et al., 2010) and western boreal forests (Lynch
et al., 2004b; Kelly et al., 2013) due to climate-driven
changes in forest fuels and seasonal moisture variability. The
contrasting fire frequency responses among boreal regions
suggest that differences in both regional climate changes and
non-climate factors, i.e. bottom-up controls, are responsible
for the different temporal responses throughout the Holocene.
Bottom-up controls, including firebreaks, fuels, surficial

deposits and drainage, are increasingly linked to temporal
and spatial variability in regional fire regimes (Cyr et al.,
2007; Parisien and Moritz, 2009; Mansuy et al., 2010).
However, local environmental factors are numerous, variable
and interact with climate affecting the ignition, spread and
extinction of fires, making their effects on fire regimes difficult
to partition (Fauria et al., 2011; Barrett et al., 2013).
Dendrochronological approaches to understanding bottom-
up controls on fire regime variation confirm that lakes,
watercourses and wetlands can disrupt fuel continuity and
thereby inhibit fire spread (Larsen, 1997; Hellberg et al.,
2004; Cyr et al., 2005) and influence fire frequencies
(Heyerdahl et al., 2001). Similarly, surficial deposits and
drainage have altered fire cycles in the eastern Canadian
boreal forest (Bergeron et al., 2004; Mansuy et al., 2010) by
moderating the distribution and growth of vegetation and
consequently fuel arrangement, distribution and moisture.
Moreover, fuel type influences fire behaviour as coniferous
species possess high flammability due to the high volatile
content in oils and resin. In contrast, boreal stands dominated
by deciduous trees appear to burn at a lower rate, due to
decreased ignitions caused by higher foliar moisture content
and vertical fuel and canopy arrangement (H�ely et al., 2000;
Cumming, 2001; Krawchuk et al., 2006). While dendrochro-
nological evidence for the influence of local environmental
factors on fire regimes is accumulating, there is a shortage of
evidence for the effects of the same environmental factors at
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centennial-millennial timescales. Given that the relative
influences of local environmental controls on fire regimes
may change over timescales longer than existing observation-
al records, a paleoecological approach to fire history recon-
struction can clarify some long-term fire–environment
relationships in the boreal forest.
This study describes 10 000-year fire histories reconstructed

from high-resolution macroscopic charcoal records obtained
from six lakes, two previously published sites (Senici et al.,
2013) and four new unpublished records from a mixedwood
boreal forest in central Canada (north-western Ontario)
(Fig. 1). This region is well suited for exploring the effects of
natural firebreaks and surficial geology on fire frequency,
because of the highly variable distribution of lakes, wetlands
and surficial deposits and relatively homogeneous elevation,
slope and aspect. Because forest fuel connectivity is a strong
predictor of regional fire frequency (Miller and Urban, 2000;
Peters et al., 2004), sites in poorly connected landscapes as
inferred through high modern non-forest cover in the form of
open-water lakes and wetlands are expected to have longer
fire return intervals (FRIs) throughout the Holocene. We
predict that the influence of local environmental controls on
FRIs might change over time in response to shifting landscape
cover, vegetation and ongoing climatic changes following
deglaciation.

Materials and methods

Study area

We conducted this study at six lakes, Avril (AVR, 49˚220700N,
89˚250600W), Ben (BEN, 49˚2102500N, 89˚4601000W), Beaver
(BVR, 49˚320200N, 90˚2401700W), Dom (DOM, 49˚2602200N,
89˚3705500W), DuBerger (DUB, 49˚250600N, 90˚2803300W) and
Small (SML, 49˚3405200N, 90˚2300800W), in the boreal forest of
northw-estern Ontario, Canada (Fig. 1; Table 1). The regional
climate is humid continental, with short, warm summers and
long, cold winters. The lakes are located within the Moist
Mid-Boreal (MBx) ecoclimatic region (Ecoregions Working
Group, 1989), characterized by mean summer temperature of
14 ˚C and mean winter temperature of �13 ˚C. Mean annual
precipitation ranges between 700 and 800mm. The forest is
within the boreal mixedwood region (Baldwin et al., 2012),
characterized by a complex mosaic of forest types varying in
structure and in relative proportions of coniferous and
broadleaved tree species. Regional forests are dominated by
conifers (needle-leaved, cone-bearing trees) of the family
Pinaceae, mainly Picea mariana (Mill.) B. S.P. and Larix
laricina (Du Roi) K. Koch on wet organic soils and Pinus
banksiana Lamb. on sandy and loamy soils. Broadleaved trees
include Betula papyrifera Marsh. and Populus tremuloides
Michx. These trees tend to be successional, forming pure

Figure 1. Study region. (a) The
six study sites (white dots) in the
central boreal forest of north-
western Ontario, Canada. Inset is
a map of Ontario highlighting
the location of the sites. (b) Lake
DuBerger (DUB), (c) Lake Beaver
(BVR), (d) Lake Small (SML), (e)
Lake Ben (BEN), (f) Lake Dom
(DOM) and (g) Lake Avril (AVR).
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stands of variable extent following disturbance contingent on
pre-disturbance forest cover and substrate ecophysiological
characteristics (Brassard and Chen, 2006; Taylor and Chen,
2011).
To evaluate the potential effects of natural firebreaks on fire

activity, preliminary regional scouting using topographic
maps, satellite imagery and onsite evaluations were con-
ducted to provide qualitative evidence that an equal number
of sites would be located in two distinct regional landscapes:
one with low lake and wetland density, and one with high
lake and wetland density. Furthermore, sites needed to be
located relatively close to each other to minimize any
variation in regional climate. Among potential sites available
for sampling, we choose lakes with small surface areas
(<5 ha), deep water (>3m) and absence of inflowing or
outflowing streams (Table 1) (Whitlock and Anderson, 2003).

Sampling

Sediment sequences were extracted in spring 2009 from the
deepest point in each lake in the form of 1- m overlapping
cores using a modified Livingston piston corer (Wright et al.,
1984). A Kajak-Brinkhurst gravity corer was used to collect
recent accumulated material at the water–sediment interface,
and was extruded on site at 1-cm intervals. Sediment cores
were wrapped in polyurethane and aluminum foil for
preservation and transported to the laboratory where they
were sliced into disks at contiguous 1-cm intervals.

Dating and age–depth models

Chronologies are based on radiocarbon dating by
14C accelerator mass spectrometry (AMS) measurements
performed on plant macro-remains and bulk organic sedi-
ment when macro-remains were not abundant enough for
AMS measurements (Supporting Information Table S1). The
CALIB program (Reimer et al., 2004) was used to calibrate
radiocarbon ages to calibrated years before present (cal a BP;
1950 CE) using the IntCal09 (Reimer et al., 2009) calibration
curve. Age–depth models were created using a cubic smooth-
ing spline, where ages were weighted based on their standard
deviation, derived from 1000 bootstrapped samples from the
calibrated age distributions using the program MCAgeDepth
(Higuera et al., 2009).

Charcoal analysis and fire history reconstruction

Contiguous subsamples (1-cm intervals, 1 cm3 each) were
taken from each sediment sequence for charcoal analysis. To
help distinguish charcoal from other biological materials,
subsamples were deflocculated in hot 10% KOH solution,
bleached in 6% sodium hypochlorite (NaClO) solution and
then wet-sieved through a 160-mm mesh. Charcoal fragments
larger than 160mm were identified, counted and measured
for surface area under a 20� stereo microscope using an
attached digital camera connected to WinSeedle (Regent
Instruments, Quebec, Canada).
Peaks in the charcoal accumulation rate (CHAR, mm2

cm�2 a�1) in lake sediment records have been shown
empirically (Lynch et al., 2004a; Ali et al., 2009b) and
through simulation models (Higuera et al., 2007) to be
associated with the occurrence of local (0–1.0 km) single or
multiple high-severity fires (hereafter referred to as a ‘fire
event’). Fire events at each lake were identified through peak
analysis of its sedimentary charcoal record using CharAnal-
ysis 1.1 (Higuera, 2009), available online at charanalysis.
googlepages.com. To account for uneven sampling intervals
resulting from variable sediment accumulation rates among

sites, before decomposition all charcoal data were interpolat-
ed to a temporal resolution of 25 years per sample,
corresponding to the approximate median sample resolution
(23.5) of the six records (Table 1). Each CHAR series was
decomposed into ‘background’ (Cback), and ‘peak’ (Cpeak)
subpopulations. Cback is composed of low-frequency varia-
tions in the charcoal record and represents changes in
charcoal production (regional biomass burning), sedimenta-
tion mixing and secondary charcoal transport (Clark et al.,
1996); we estimated Cback with a locally weighted regression
using a 1000-year moving median applied to the raw
charcoal series. Cback values were subtracted to obtain a
residual series, Cpeak. We assume that Cpeak is composed of
two subpopulations, Cnoise, representing variability in sedi-
ment mixing, sampling and analytical and naturally occurring
noise, and Cfire, representing charcoal input from local fire
events (Higuera et al., 2010). Cfire and Cnoise distributions
were estimated in a 1000-year moving window using a
Gaussian mixture model and at the centre of each window a
threshold was defined as the 99th percentile of Cnoise to
separate samples into ‘fire’ and ‘non-fire’ events. For each
record, we chose the window width that maximized a signal-
to-noise index (SNI > 3) and the goodness-of-fit between the
empirical and modelled Cnoise distributions (KS-test, P >
0.05) (Higuera et al., 2009). We did not screen peaks based
on charcoal counts of each peak as in Higuera et al. (2008,
2009) because this procedure is specific to charcoal count
data only (Ali et al., 2009b).
FRIs were calculated as the number of years between two

consecutive fire events. Mean FRIs (mFRIs) occurring between
10 and 5k cal a BP (early Holocene), during the Neoglacial
and modern period of 5–0k cal a BP (late Holocene) and the
complete reconstruction (10–0k cal a BP), were calculated for
all sites and between pooled highly and poorly connected
sites. To test whether fire events occurred synchronously
(�100 years) between highly and poorly connected sites in
these periods, we used the L function, a modified version of
Ripley’s K-function (Ripley, 1977) in the program K1D (Gavin
et al., 2006; Gavin, 2010).

Landscape analysis

We analysed landscapes at spatial scales larger than local fire
event detection inferred from charcoal peaks (�1-km radius)
to evaluate the regional bottom-up environmental factors that
may influence fire spread and consequently fire event occur-
rence (Barrett et al., 2013). We characterized the local
environment at radiuses of 2–5 km around each lake using
ESRI’s ArcMap version 10.1 (ESRI., 2012). We present the 5-
km results (Table 1). Land cover types and area were assessed
using data from Digital Northern Ontario Engineering Geolo-
gy Terrain Study (Ontario Geological Survey, 2005); existing
surficial deposits >5% cover in each radius were organized
into three broad types: glaciofluvial, encompassing glacio-
fluvial outwash, delta and esker; morainal, which included
ground moraine and mixed moraine–bedrock terrain; and
organic terrain (peatlands) (Table 1). Modern open-water lake
and wetland cover were assessed using data from CanVec
(Natural Resources Canada, 2007). In this paper we make a
distinction between wetlands and peatlands; wetlands in-
clude only riparian fens or bog dominated by graminoid
non-woody vegetation, marshes and shallow water wetlands
(<2m deep); peatlands encompass terrain where organic
substrate is >40 cm, drainage is poor, and dominant vegeta-
tion is Picea mariana and Larix laricina. Wetland and
peatland types and extent were verified on site using the
Canadian Wetland Classification System (National Wetlands

Copyright © 2015 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 30(4) 365–375 (2015)
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Working Group, 1997). Area calculations were converted to
per cent cover. Topographic indices of elevation, slope and
aspect were calculated using an 8–23-m resolution digital
elevation model (Natural Resources Canada, 2007).
The open-water lake and wetland features at the 5-km

radius were then clustered by the K-means clustering
method (MacQueen, 1967) to divide lakes into two classes:
highly connected, including lakes AVR, BEN and DOM,
and poorly connected, including lakes BVR, DUB and SML
(Table 1).

Statistical analysis

To examine how FRIs changed temporally and whether the
changes were influenced by bottom-up factors, we analysed
relationships between FRIs, time and landscape connectivity
using generalized linear mixed effect models (GLMMs) from
the package arm (Gelman et al., 2013) in the statistics
program R (R Development Core Team, 2013). Our response
variable was FRI. Forest connectivity was assessed using
groupings from our cluster analysis of open-water lake and
wetland features. We used calibrated years before present
(cal a BP) as a predictor for FRI change over time. As we are
also interested in the difference in FRI between the early
Holocene (10–5k cal a BP) and late Holocene (5–0k cal a
BP), we included Holocene (early vs. late) as a predictor.
Continuous variables were centered before analysis. We used
an information-theoretic approach based on corrected Akaike
Information Criterion (AICc) (Burnham and Anderson, 2002;
Stauffer, 2008) to select the most parsimonious model. Our
final model was:

FRIijkl ¼ mþ Gi þ HjðiÞ þ TkðiÞ þ HjðiÞ � TkðiÞ þ pl (1)

where FRIijkl is fire return interval (years), m is the mean, Gi is
group, Hj(i) is Holocene time period nested within group, Tk(i)
is time (cal a BP) nested within group and pk is random effect
of sampling lake.
Model goodness of fit was assessed by R2, calculated using

the methodology presented by Nakagawa and Schielzeth
(2013). For mixed-effects models, R2 is evaluated as marginal
R2 and conditional R2 (Vonesh et al., 1996) where marginal
R2 represents variance explained by fixed factors, and
conditional R2 represents variance explained by both fixed
and random factors.

Results

Dating and age–depth models

The age–depth models represent 10 004 years of sedimenta-
tion at AVR, 11 700 at BVR, 10 212 at BEN, 10 299 at DOM,
10 108 at DUB and 10 007 at SML. The models (Fig. 2) are
comparable in sedimentation rate, with BEN having the
highest mean sedimentation rate at 0.0866�0.0534 cm a�1

and BVR having the lowest at 0.0468� 0.0495 cm a�1

(Table 1). Models for BEN, BVR and SML exhibit acceleration
in the sedimentation rate between c. 5 and 3.5k cal a BP.

Charcoal analysis and fire history reconstruction

Global SNI values for all charcoal records are high (median
SNI >3.0) (Fig. 3) and show a clear separation between
background charcoal and fire event signals, indicating that

Figure 2. Age–depth models for sediment cores from the six lakes calculated using a cubic spline. Open circles are 14C ages, and error bars
represent estimated 95% confidence intervals based on 1000 bootstrapped samples of the calibrated dates.

Copyright © 2015 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 30(4) 365–375 (2015)
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these records are suitable for fire history reconstructions using
peak analysis (Kelly et al., 2011).
In total, 50 fires were detected at AVR, 46 at BEN, 47 at

DOM, 39 at BVR, 39 at DUB and 36 at SML (Fig. 3). FRI
reconstructions (raw FRIs interpolated to annual values and
smoothed with the program LOESS) indicate that fires were
most frequent in the late Holocene among all sites except
DOM (Fig. 3c). Among highly connected sites, fires recur at
relatively even intervals throughout the reconstruction; fires
occur most frequently between c. 10 and 8k cal a BP at AVR
(Fig. 3a), between c. 6 and 4k cal a BP at BEN (Fig. 3b) and

between c. 8 and 6k cal a BP at DOM (Fig. 3c). Among
poorly connected sites fire occurrence was somewhat irregu-
lar following deglaciation but increased with time; fires were
most frequent between c. 4 and 1k cal a BP at BVR, between
c. 4 and 2k cal a BP at DUB and between c. 3 and 1k cal a
BP at SML.
Mean FRIs were longer among poorly connected sites

throughout the Holocene (Table 2); differences were promi-
nent in the early Holocene where mFRI variation between
highly and poorly connected sites was >100 years. In the late
Holocene, all sites have comparable mFRI distributions. Fire

Figure 3. Charcoal peak and background records, signal-to-noise index (SNI) and fire return intervals (FRI) over time for (a) AVR, (b) BEN, (c)
DOM, (d) BVR, (e) DUB and (f) SML. The first panel displays the charcoal records, where vertical gray lines are the interpolated CHAR peaks, the
black curve represents CHAR background and the crosses indicate identified fire events. In the second panel, the solid black curve represents the
SNI and the dashed gray line indicates the minimum threshold (SNI¼3) used to evaluate the suitability of the charcoal record for peak detection.
The third panel shows FRI distributions, where circles represent identified fire events and the corresponding fire interval, and the black curve
represents LOESS-smoothed FRIs through time.

Copyright © 2015 John Wiley & Sons, Ltd. J. Quaternary Sci., Vol. 30(4) 365–375 (2015)
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event occurrence was independent among highly connected
sites in both periods (Fig. 4a,b). Similarly, fires occurred
independently in both early and late Holocene periods
among poorly connected sites (Fig. 4c,d).

Landscape analysis

The spatial distributions of land cover are dissimilar between
highly and poorly connected groups (Table 1). The percent-
age of open-water coverage was highest at SML (16.4%) and
lowest at DOM (1.5%). Wetland coverage was highest at
BVR (9.8%) and lowest at AVR (2.1%). Total organic material
was highest at DOM (28.7%) and lowest at AVR (8.1%).
Dominant surficial deposits include glaciofluvial deposits in
the form of eskers, ice-contact deltas and outwash plains, and
ground moraine. At DUB a large portion (26.8%) of the
regional landscape is classified as organic terrain (Table 1),
but this area is a heterogeneous mixture of peat, sand and
gravel in glaciofluvial outwash with subordinate landforms of
till and sand in ground moraines with overall dry drainage;
accordingly, this area was not considered peatland. Elevation,

slope and aspect were relatively homogeneous among all
sites.

Temporal and spatial effects on FRI

Signs of z-values and significance of the predictor variables in
the GLMM showed that FRIs were strongly affected by
landscape connectivity and their interactions with time
(Table 3). Overall, FRIs were longer among poorly connected
sites (Table 3). There were no significant differences in FRIs
among highly connected sites between different Holocene
time periods (Table 2; Fig. 5a); similarly, among these sites
there were no significant differences in FRIs over time in each
period (Table 3; Fig. 5a). Among poorly connected sites FRIs
were significantly shorter in the late Holocene (Table 2;
Fig. 5b). In the early Holocene there was a gradual increase
in FRIs following deglaciation to c. 5k cal a BP (Fig. 5b), after
which fires occurred much more frequently. The marginal R2

for this model was 0.72 and the conditional R2 was 0.89.

Discussion

There are clear differences in fire activity between highly and
poorly connected sites in the early Holocene, although in the
late Holocene all charcoal records have similar peak frequen-
cies and FRI distributions, suggesting broadly similar fire
regimes over the last 5000 years. Our model indicates that
FRIs were significantly longer in the early Holocene near sites
with abundant natural fire breaks (Fig. 5b; Table 2), which
suggests that the expression of long-term climatic changes on
fire regimes may be moderated by the presence of open-water
lakes and wetlands in the regional landscape. The temporal
changes in FRIs associated with these sites supports the idea
that while top-down controls, sich as climate, influenced
regional centennial- to millennial-scale fire frequency dynam-
ics, bottom-up controls probably affected fire ignitions and
spread, generating variable fire event timing and FRI distribu-
tions (Barrett et al., 2013; Lynch et al., 2014; Mustaphi and

Table 2. Mean fire return intervals (years) with 95% confidence
intervals in the early (10–5k cal a BP), late (5–0k cal a BP) and
complete (10–0k cal a BP) Holocene time periods at each site and for
clustered connectivity classes.

Early Holocene Late Holocene Complete

Highly connected 216 (177–255) 203 (165–241) 209 (182–236)
AVR 189 (156–222) 212 (144–280) 201 (162–240)
BEN 236 (158–314) 191 (125–257) 211 (160–262)
DOM 226 (145–307) 208 (145–271) 217 (165–269)
Poorly connected 319 (267–371) 229 (184–275) 267 (232–302)
BVR 345 (232–458) 222 (150–294) 267 (203–331)
DUB 300 (214–386) 226 (154–298) 259 (202–316)
SML 312 (240–384) 240 (149–331) 275 (215–335)

Figure 4. Temporal synchrony analysis of
fire occurrence between poorly connected (a,
b) and highly connected (c,d) sites in the
early and late Holocene. In each plot, fire
event synchrony is assessed by comparing the
bivariate L function (black line) with a boot-
strapped 95% (gray lines) and 99% (dotted
gray line) confidence envelope. Fire occur-
rence within a specified time window is
considered significantly synchronous if the
L function exceeds the upper confidence
interval (CI), asynchronous if the L function
exceeds the lower CI, or occurring indepen-
dently if no CIs are exceeded.
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Pisaric, 2014). Our observations are consistent with recent
studies that demonstrate divergent fire regimes between areas
with abundant lakes and wetlands and those without (Hell-
berg et al., 2004; Barrett et al., 2013; Lynch et al., 2014);
however, our results suggest that some of the observed FRI
differences may be restricted to particular climates or periods
where differences among sites may have been more pro-
nounced, i.e. the immediate postglacial period of the early
Holocene.
As heat transfer is reduced by fuel breakages, the observed

differences in FRIs among sites may simply be a consequence
of diminished fire ignitions and spread in landscapes with
abundant firebreaks. However, our significant model results
for temporal period (Table 3) and the broadly similar mFRIs
(Table 2) in the late Holocene regardless of firebreaks suggest
that the differences in fire histories may be related to climatic
factors. Although climatic influences on wildfire behavior in
the boreal forest are well documented (Wotton et al., 2010;
Parisien et al., 2014), the long-term influences on fire
occurrence and extent in central Canada are uncertain
because of limited data on paleo-fire occurrence and Holo-
cene-scale regional paleoclimate reconstructions. Among
poorly connected sites, in the early Holocene when it was
warmer and drier (Viau and Gajewski, 2009) mFRIs were
approximately 30% longer than those of the last 5000 years
when the regional climate was cooler and wetter (Table 2;
Fig. 5b). These results differ from the highly connected sites
where mFRIs did not change significantly between temporal
periods (Table 2). Overall, these results are consistent with
studies showing higher fire frequencies in boreal forests under
wetter climates of the late Holocene (Lynch et al., 2004b;
Genries et al., 2012), although this interpretation is

complicated because the decreased FRIs were driven primari-
ly by the poorly connected sites. Additionally, given the
relative proximity among sites, it is unlikely that the fire
frequency differences between temporal periods and our
connectivity classes are a direct result of climatic conditions.
The non-uniform fire frequency responses between connec-
tivity classes over time and ubiquitous independence in fire
event occurrence suggests complex temporal and spatial
fire regime variations that may reflect interactions between
a changing climate and shifting land cover following
deglaciation.
When compared with lakes, wetlands are highly dynamic

firebreaks as hydrology and vegetation varies over time scales
much shorter than those of these paleoecological reconstruc-
tions, complicating our understanding of their long-term
potential in stopping fires (Hellberg et al., 2004). Consequent-
ly, the significant results for temporal period and connectivity
class may reflect differences in land cover of the early
Holocene versus the late Holocene, by which the pattern and
timing of wetland and peatland formation and development
may have contributed to the increased fire frequency among
poorly connected sites. Many peatland successional pathways
originate from the gradual in-filling of water bodies (Harris
et al., 1996; Rydin and Jeglum, 2006), moreover there is an
average 4000–5000-year (Gorham et al., 2007; Ruppel et al.,
2013) lag time between deglaciation and peak peat develop-
ment due to the time it takes for land to become amenable
for peat formation (Halsey et al., 2000). Consequently, the
terrestrial cover designated wetland may have been open-
water in the early Holocene, and the increased fire activity in
the late Holocene may have resulted from wetland cover
becoming a viable source of forest fuels thereby facilitating

Table 3. Estimates of z-value and standard error of the fixed effects from a generalized linear mixed model with fire return intervals as dependent
variable (Poisson distribution; log-link).

Term Estimate SE z-value P

(Intercept) 5.413 0.050 107.780 <0.001
Group (poor) 0.752 0.071 10.600 <0.001
Group (high): Holocene (late) �0.009 0.023 �0.390 0.698
Group (poor): Holocene (late) �0.796 0.024 �33.180 <0.001
Group (high): Time 0.056 0.017 3.260 0.001
Group (poor): Time �0.388 0.016 �23.700 <0.001
Group (high): Holocene (late): Time �0.011 0.023 �0.480 0.630
Group (poor): Holocene (late): Time 0.351 0.025 14.110 <0.001

Figure 5. Scatterplots and fitted fire return
intervals (FRIs) of significant fixed effects from
the generalized linear mixed model. For
illustrative purposes we present simple linear
regression lines through FRIs in the early and
late Holocene time periods at (a) highly
connected and (b) poorly connected sites.
The vertical dotted gray line marks the Holo-
cene boundary (5k cal a BP). This figure is
available in colour online at wileyonlineli-
brary.com.
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the spread of fire. We acknowledge the limitations in using
modern metrics for landscape features throughout the Holo-
cene, specifically before c. 5–6k cal a BP, given that the
arrangement and development of soils (Liu, 1990) and peat-
land initiation and expansion (Ruppel et al., 2013) may have
been spatially more limited in the immediate postglacial
period.
The increased fire frequency after c. 5k cal a BP may be a

result of positive vegetative feedbacks between highly flam-
mable vegetation and frequent crown fires (Johnstone et al.,
2010; Minckley et al., 2012; Lynch et al., 2014). Lower
temperatures and increased precipitation in the late Holocene
may have been advantageous for the growth and develop-
ment of coniferous vegetation (Brooks et al., 1998). In the late
Holocene, Picea mariana has expanded in eastern mixed-
wood boreal forests (Carcaillet et al., 2001 2010), and in
boreal forests of Alaska (Lynch et al., 2002; Brubaker et al.,
2009; Higuera et al., 2009) and is linked to increased fire
frequency. Additionally, recent paleoecological vegetation
reconstructions in the same ecoregion (Genries et al., 2012)
indicate increased Picea, Pinus banksiana and Betula papy-
rifera in the late Holocene with a concomitant decrease in
mFRIs. Furthermore, the cooler moister prevailing climate of
the late Holocene would not have precluded the incidence of
extreme short-term fire weather (De Groot et al., 2013)
capable of sustaining very large, high-intensity wildfires able
to overcome natural firebreaks, contributing to the decreased
FRIs among poorly connected sites.
One surprising outcome of this study was the relative

complacency of fire regimes among highly connected sites.
These results contrast with other boreal fire records that show
substantial fire regime variability at centennial–millennial
timescales (Ali et al., 2012; Genries et al., 2012; Kelly et al.,
2013; Mustaphi and Pisaric, 2014), which suggests that forest
ecosystems at our highly connected sites were better able to
sustain fundamental function, structure and feedbacks when
confronted with perturbations such as climate changes or fire
(Chapin et al., 2010). As bottom-up controls on fire regimes
are inherently spatially heterogeneous, their spatial arrange-
ment in the landscape largely determines their relative
influence on fire regime, whereby greater spatial variability in
a factor turns into more variable fire patterns (Parks et al.,
2012). As our highly connected sites possess fewer landforms
sensitive to changes in climate (i.e. open-water and wetlands)
in both count and per cent cover, these regions may have
been comparably more resilient to late Holocene changes in
soil moisture and lake and wetland hydrology than our poorly
connected sites, thereby maintaining similar land cover and
comparable levels of fire activity between temporal periods.
The relatively continuous intermediate level of fire frequency
(mFRI � 200 years) suggests additional mechanisms that may
have contributed to fire regime complacency at these sites.
This region of the boreal forest may be resistant to very high
burn rates because continuous fire recurrence and overlap
can lead to an overabundance of young forest stands in the
regional landscape, thereby creating a fuel-mediated negative
feedback on increased fire activity (H�eon et al., 2014).
Alternatively, potential late Holocene fire frequency increases
may have been constrained by increased broadleaved growth
(Chen et al., 2009; Kelly et al., 2013), thereby producing a
potential negative feedback to increased regional burning
(Beck et al., 2011; Johnstone et al., 2011; Girardin et al.,
2013). A high-resolution pollen analysis from these sites
could help resolve some of these possibilities.
Current global climate models and climate change scenari-

os suggest that fire regimes will be characterized by increased

fire activity and area burned across the boreal region
throughout the 21st century (Flannigan et al., 2009, 2013).
The impacts of climate changes on fire regimes will not be
consistent across boreal regions; our results imply there may
be significant variation within regions not only due to the
direct effects of climate change but indirect effects mediated
through bottom-up factors sich as firebreaks and land cover
changes. More specifically, landscapes with abundant lakes
and wetlands may be more vulnerable to land cover
transformations through shallow lake and wetland shrinkage
and drying leading to increases in forest connectivity and
burning.

Conclusions

This study demonstrates complex spatial and temporal
variability in fire regimes over the past 10 000 years.
Throughout the Holocene, FRIs did not vary significantly
near sites with few natural firebreaks in the regional
landscape. In contrast, from 10 to 5k cal a BP, FRIs were
significantly longer near sites with abundant natural fire-
breaks, with FRIs decreasing in the last 5000 years to equal
those of the highly connected sites. The decrease among
poorly connected sites was probably in response to the
indirect effects of climate change, characterized by a wetter
and cooler climate, influencing land cover and forest fuels.
In contrast, fire regimes at highly connected sites were
insensitive to changes in centennial- to millennial-scale
climate, which suggests greater resilience to perturbations
and potential negative feedbacks constraining increased fire
activity. Our results show divergent fire regimes between
highly and poorly connected landscapes and highlight the
importance of considering the effects of bottom-up factors
when interpreting Holocene-scale paleofire records. These
results clarify some patterns and controls of central boreal
forest fire regime variations, and imply that landscapes with
abundant lakes and wetlands may be more vulnerable to
future climate changes with far-reaching implications for
forest ecology and wildfire management. We stress the
need for more studies investigating the role that bottom-up
controls play in affecting boreal fire regime variation.

Supporting Information

Additional supporting information can be found in the online
version of this article:
Table S1: AMS 14C dating of the study lakes.
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