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Abstract

Increasing access to extensively replicated and broadly distributed tree-ring collections has

led to a greater use of these large data sets to investigate climate forcing on tree growth.

However, the number of chronologies added to large accessible databases is declining and

few are updated, while chronologies are often sparsely distributed and are more representa-

tive of marginal growing environments. On the other hand, National Forest Inventories

(NFI), although poorly replicated at the plot level as compared to classic dendrochronologi-

cal sampling, contain a large amount of tree-ring data with high spatial density designed to

be spatially representative of the forest cover. We propose an a posteriori approach to vali-

dating tree-ring measurements and dating, selecting individual tree-ring width time series,

and building average chronologies at various spatial scales based on an extensive collection

of ring width measurements of nearly 94,000 black spruce trees distributed over a wide area

and collected as part of the NFI in the province of Quebec, Canada. Our results show that

reliable signals may be derived at various spatial scales (from 37 to 583,000 km2) from NFI

increment core samples. Signals from independently built chronologies are spatially coher-

ent with each other and well-correlated with independent reference chronologies built at the

stand level. We thus conclude that tree-ring data from NFIs provide an extraordinary oppor-

tunity to strengthen the spatial and temporal coverage of tree-ring data and to improve coor-

dination with other contemporary measurements of forest growth to provide a better

understanding of tree growth-climate relationships over broad spatial scales.

Introduction

Because tree-ring measurements can be used to estimate the influence of environmental forces

on annual wood production [1,2], they have been recognized as a key resource to provide a

long-term perspective of the growth response to global environmental changes [3,4]. Accord-

ing to the principle of aggregate tree growth, tree-ring series contain information about a
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combination of drivers, including not only climate, but also age-related growth trends, soil

conditions, disturbances, inter-tree competition, and random processes, working at different

spatial scales.

The traditional dendrochronological approach consists of building annually dated tree-ring

chronologies, either to reconstruct climate variables (dendroclimatology) or to date and ana-

lyze disturbances and variations in the local environment (dendroecology) [5]. Quality control

of ring width measurements and dating (crossdating) is usually performed to ensure proper

identification of the exact years of formation of annual rings [6]. Raw ring width time series of

a given population are typically standardized, i.e. long-term growth trends are removed to iso-

late interannual changes, and averaged into a single master chronology representative of the

local signal. Averaging tree-ring series at the stand scale minimizes tree-scale noise, although

the residual growth signal still contains stand-scale noise from local topography, soil condi-

tions, inter-tree competition, and local disturbances, in addition to climate [7,8].

In recent decades, broad-scale networks of tree-ring measurements have allowed relation-

ships between species-specific growth and thermal and moisture variations to be studied at the

local, regional, continental, or near-hemispheric scales [9]. Averaging ring width time series

over broad spatial scales provides a better assessment of the commonly shared interannual

growth patterns, and reduces tree- and stand-scale noise [9]. It has indeed been demonstrated

that the accuracy of regional chronologies and the assessment of climate-growth relationship

tend to improve more by increasing the number of plots rather than the number of trees per

plot [10]. Consequently, broad-scale tree-ring networks could increase our capacity to estimate

species-specific climate sensitivity [11] and to predict forest responses to environmental

changes at regional scales [12], while providing more robustness for broad-scale climate recon-

structions [13]. For this reason, multiple regional-scale networks of tree-ring measurements

have been established over the last decade [9,14], the rationale being that tree-ring records

from networks covering broad areas should be representative of commonly shared growth pat-

terns as the weight of local, non-climatic factors is reduced [9,10,15]. Furthermore, the spatial

coherence of independent tree-ring chronologies from broad areas thus plausibly reflects

broad-scale climate forcing [16].

Most broad-scale dendroclimatic studies produced over the past few decades have made

extensive use of the International Tree-Ring Data Bank (ITRDB), the largest open-access tree-

ring archive managed by the U.S. National Oceanic and Atmospheric Administration

[4,17,18]. The database currently includes tree-ring width chronologies from 4,467 studies.

However, few chronologies have been updated and the number of new chronologies being

added is declining. Thus, more than three quarters of the ITRDB chronologies do not extend

beyond the year 2000 [4]. This and the lack of spatial representativity could have negative con-

sequences for paleoclimatic investigations, in addition to precluding the integration of tree-

ring width data with the increasingly available data from instrumental weather stations, remote

sensing, national forest inventories, and other in situ measurements of forest growth [4,19].

Moreover, tree-ring data are mostly distributed in North America and Europe, focusing on

marginal growing environments selected to maximize the climatic signal, and the selective

sampling of the biggest trees within populations (with the aim of producing long chronologies)

often leads to bias in archived datasets. This further limits their usability for dendroecological

investigations and for documenting the global forest response to contemporary environmental

changes [4,18,20,21].

Recent studies demonstrate that rudimentary increment core sampling (i.e. sampling with

low replication at the stand level) from National Forest Inventories (NFI) may potentially be

used for dendroecological investigations [22–31]. Indeed, although tree-ring sampling is rudi-

mentary or non-existent in some NFIs [4], many NFIs include increment core samples that
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were taken to age stands and determine site index, as well as to estimate annual average tree

growth [23,26–28,31].

Increment core samples from NFIs are typically poorly replicated at the plot level as com-

pared to classic dendrochronological sampling, which limits the possibility of crossdating vali-

dation at the plot scale. Although crossdating is not a prerequisite for forest inventories (i.e.

tree age and site index estimation) [26], the presence of a significant proportion of poorly

crossdated chronologies in a dataset could violate one of the fundamental principles of den-

drochronology and thus seriously jeopardize the potential of the NFI dataset for any study

requiring knowledge of the exact year of formation of annual rings in increment cores [32].

Considering the huge effort invested in the sampling and processing of NFI tree-ring data-

bases, it would, however, be unfortunate if the scientific community were unable to use these

tree-ring data because of the above-mentioned issue. On the other hand, NFIs have much

higher spatial densities and are generally designed to be geographically unbiased and spatially

representative of the forest cover [23,25,26]. Developing a procedure that would permit

researchers to extract a reliable dendroclimatic signal from NFI tree-ring data would provide

an extraordinary opportunity to strengthen the spatial coverage of tree-ring width data in

terms of climate zone, species composition, and forest productivity, and to increase coordina-

tion with long-term monitoring plots in NFIs [4,26].

In this study, we assessed whether reliable and spatially coherent signals can be extracted

from an extensive collection of tree-ring width measurements from 94,000 black spruce trees

sampled in 34,000 stands distributed across 583,000 km2 in Quebec, Canada. Because climatic

factors are less spatially heterogeneous than non-climatic factors, we hypothesized that (i) reli-

able tree-ring signals may be assessed at various spatial scales, but that the amount of covari-

ance within tree-ring signals would be negatively correlated with geographic distance among

trees, and (ii) for a given spatial scale of tree-ring width series aggregation, coherency among

master chronologies will decrease with geographical distance.

Methods

Study area

Historical forest inventory programs in Quebec, Canada, were mainly conducted below the

current northern limit for forest management, which extends from latitude 45˚ to 52˚N and

covers approximately 583,000 km2, of which 434,667 km2 are classified as productive forest,

i.e. more than 30 m3 ha-1 of wood produced in 120 years. This territory is characterized by

three different forest subzones from South to North: hardwood forest, temperate mixed-wood

forest and continuous boreal forest. The temperate mixed-wood forest (latitude 47˚ to 48˚N)

marks the transition between the hardwood forest to the south, which is dominated by sugar

maple (Acer saccharum Marsh.), and the coniferous forest to the north, which is dominated by

balsam fir (Abies balsamea (L.) Mill.) and black spruce (Picea mariana (Mill.) B.S.P.). Normal

mean annual temperatures (1971–2000) range from approximately -4.7 oC to 6.7 oC while

annual precipitation ranges from approximately 700 mm to 1600 mm. At the beginning of the

20th century, logging was confined to areas south of latitude 49˚N, but now extends up to lati-

tude 51˚N. Along with forest management, fire and spruce budworm (Choristoneura fumifer-
ana Clemens) outbreaks are the main broad-scale disturbances regulating boreal forest

dynamics [33].

Data collection

Forest inventory programs conducted by provincial forest authorities use temporary and per-

manent sample plots to comprehensively characterize existing forest resources. The forest
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inventory is based on a stratified randomized sampling design with proportional allocation.

Forest stands interpreted from aerial photographs were first stratified based on stand charac-

teristics (composition, density, height, age), edaphic properties (slope, drainage, deposit), and

disturbance history [34]. Circular plots (radius = 11.28 m, area = 400 m2) were then propor-

tionally allocated to each stratum according to their respective surface area [35]. In each plot,

the diameter and visual health of every tree, the composition of the understory and soil thick-

ness, deposit type, and drainage class were recorded. Increment cores were collected in both

permanent and temporary sample plots according to strict sampling protocols [35,36]. In each

temporary sample plot, three trees (diameter at breast height (DBH) > 90 mm) were cored at

one meter above ground: one was selected randomly, another was selected randomly among

the four biggest trees (in DBH) of the dominant species, and the third had a diameter closest to

the mean diameter of the dominant tree species. In permanent sample plots, up to nine trees

were cored: five were selected randomly; two were selected randomly among the four biggest

trees (in DBH) of the dominant species; one had a diameter close to the mean diameter of the

dominant tree species; and the last had a basal area at breast height closest to the 30th percentile

of the distribution of stem basal area for the dominant species. The current study uses com-

plete increment core data for black spruce trees, collected from 34,105 permanent and tempo-

rary sample plots, for a total of 94,120 black spruce trees (Fig 1). Approximately 90% of the

sampled black spruce stands contain 3 tree core samples or less and only 0.16% of the sampled

sites contain 10 or 11 black spruce samples.

Laboratory analysis

Cores were dried, glued to a wooden holder, and sanded successively with 120, 220 and 320

grit sandpaper to obtain a smooth surface. Ring boundaries were first carefully detected and

identified under binocular magnification by specialized technicians, then measured to the

nearest 0.01 mm with the WinDendro Image Analysis System for tree-ring measurement

(Regent Instruments Inc.) after scanning the sample at a resolution of 1000 dots per inch. A

calendar year was attributed to each ring, the outermost ring corresponding to the year of tree

Fig 1. Map showing the location of tree-ring sample sites. Red triangles show the locations of the ten

reference chronologies while green points show the locations where cores of black spruce trees were

sampled in national forest inventories in Quebec, Canada.

https://doi.org/10.1371/journal.pone.0189444.g001
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sampling, or exceptionally to the year before for plots sampled prior to the start of tree-ring

formation.

Tree-ring data validation and chronology computation

It is well known that obtaining tree-ring data is costly and time-consuming [23,26]. Due to the

substantial number of samples processed (94,000 cores) and the low sample replication at the

stand level (one to eleven trees of the same species per plot, i.e. depends on stand and region

level tree diversity), tree-ring width measurements were carefully dated but their crossdating

was not validated at the stand level according to the standard procedure before archiving the

information in the database.

Dendrochronologists generally use computer-assisted quality control of tree-ring dating

and measurements. COFECHA is the most commonly used program for that purpose [37]. In

the absence of an established reference chronology for a given region and species, the standard

procedure consists of removing low-frequency variations, averaging data to form a master dat-

ing series, and correlating individual transformed series with the master dating series [37]. The

program can thus be used to accept or reject a series for inclusion in a site chronology [37].

We used a similar procedure (described below) to apply an a posteriori validation procedure to

correctly select individual tree chronologies and extract reliable signals at various spatial scales

from Quebec’s extensive NFI tree-ring database.

The most common approach for analyzing broad-scale tree-ring signals is to group trees

cored from nearby plots and to build a regional chronology for each climatically homogeneous

zone defined within the study area [10]. In this study, trees were grouped based on the similar-

ity and proximity of their environments to generate master chronologies at various spatial

scales using the Land Hierarchical Classification System (LHCS) developed by the Quebec

Ministry of Forest, Wildlife and Parks [38]. The LHCS organizes the territory into units similar

in climate, vegetation, or geomorphology at 11 nested spatial scales. At the finest scale, the ter-

ritory is separated into 2,545 ecological districts (median area: 228 km2), grouped into 185

landscape units (median area: 3,165 km2), grouped into 71 sub-regions (median area: 8,726

km2) (Fig 2). Because the LHCS does not explicitly take into account the local soil physical

environment, we also grouped sites by soil physical environmental types (nested to the LHCS)

according to soil type (mineral, organic), moisture regime, and texture as determined during

field sampling (Table 1).

The study was conducted for the 1900–2012 period. In order to emphasize year-to-year var-

iability in tree-ring series and to remove non-climatic trends due to tree age, stem size, stand

dynamics, as well as mid-term trends in climate, we fitted each individual series with a cubic

smoothing spline with a 50%-frequency cut-off at ten years [39]. We used a highly flexible

spline function to remove most of the low-frequency variations and focus on high-frequency

variations mainly associated with interannual climate variability. Ring-width measurements

were transformed into dimensionless indices by dividing raw values with spline function esti-

mates. Because the autocorrelative structure present in tree-ring series can blur the climatic

signal and interfere with several statistical assumptions, autoregressive models of various

orders were fitted to each standardized tree-ring series, the best one was selected using the

Akaike Information Criterion [40], and the residual series were retained for the study [41].

Spearman correlation coefficients were computed between each individual standardized

tree-ring series of a given spatial unit and its corresponding average chronology using bi-

weighted robust estimates of the means of all standardized series [41]. Individual series that

were significantly correlated (p< 0.05) to this “raw” mean regional chronology were used to

compute a new “refined” average regional chronology. Spearman correlation coefficients were
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again computed between each individual standardized tree-ring series and this refined average

regional chronology. Here again, significantly correlated series were used to recompute the

refined regional chronology. Finally, Spearman correlation coefficients were computed

between all individuals composing that regional chronology and the refined chronology itself,

and only significantly correlated series were kept building a refined regional chronology. This

last step was iteratively repeated until all individual tree samples included in the regional chro-

nologies were significantly correlated to it (p< 0.05). In comparison with our approach,

COFECHA used a threshold probability value of 0.01 to underline and flag possible problems

in tree-ring width series. The processing of raw tree-ring width measurements was completed

using the “dplR” package [42] in the R software [43]. Regional chronologies were considered

valid when they displayed an expressed population signal (EPS) value� 0.85. While frequently

misinterpreted as an indicator of chronology suitability for climate reconstruction purposes,

Fig 2. Example of the hierarchical structure of the forest Land Hierarchical Classification System

(LHCS) developed by the Quebec Ministry of Forest, Wildlife and Parks. The provincial territory is

separated into 12 bioclimatic domains (thick lines) and sub-domains (thin lines) (A). Each of them is separated

according to land region (thick lines) and sub-region (thin lines) (B), these latter being separated into

landscape units (thick lines) and ecological districts (thin lines) (C).

https://doi.org/10.1371/journal.pone.0189444.g002
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EPS is a measure of how well the chronology signal is a good estimator of the population signal

[44,45]. The statistic estimates the strength of the common signal relative to the total signal

(common signal + noise) in a tree-ring time series [44].

Probability of false-positive selection and possible hidden signals

Autocorrelative structure is inherent in individual tree-ring series. As a result, improperly

dated individual series can still be significantly correlated to the average chronology, increas-

ing the probability of false-positive selection. As previously mentioned, autoregressive struc-

ture was removed from individual standardized series. To explore the probability of false-

positive selection associated to the remaining autocorrelative structure in standardized series,

the population distribution of first-order autocorrelation has been documented.

In order to verify that the rejected series did not contain any additional hidden signals, we

applied our selection procedure to the rejected data for each spatial unit and scale. A principal

component analysis (PCA) was also computed on the scaled matrix of all residual series in

each spatial unit for each spatial scale to ensure that the selected residual series represent the

dominant signal in the group of series.

As performed by the COFECHA program, to allow detection of dating error, rejected stan-

dardized series have been tested for correlation, segment by segment, against their respective

regional chronologies built at the landscape scale. This has been performed by calculating cor-

relations for each segment of the series under examination with the regional chronology at the

point of dating, and also at each position from 5 years earlier (-5) to 5 years later (+5) [37]. Seg-

ment tested are 22 years long (1944–1965, 1955–1976, 1966–1987), restricting the analyses to

the 1944–1987 period.

Reliability of the computed chronologies and coherence across space

Reliability of the computed chronologies at various spatial scales was assessed by computing

several descriptive statistics, including the mean correlation of individual residual series with

their corresponding master chronologies (Mcor), the mean correlation between all pairs of

residual series (Rbar), and the EPS [44,46].

We assessed spatial coherency among master chronologies by analyzing the spatial auto-

correlation between independently built chronologies at each spatial scale. Correlations

Table 1. Schematic classification of soil physical environments described in Quebec.

Mineral soil Organic soil

Soil moisture regime Very shallow (<25 cm) or very stony Coarse texture Medium texture Fine texture

Xeric to mesic 1 2 3

Hygric 0 4 5 6

Hydric 7 8 –Fen

9 –Bog

Xeric—Dry, little moisture retention, excessively drained. Water removed very rapidly in relation to supply; soil is moist for brief periods following

precipitation.

Mesic—Moist, adequate soil moisture retention year-round. Water removed somewhat slowly in relation to supply; soil may remain moist for a significant,

but sometimes short, period of the year. Available soil moisture reflects climatic inputs.

Hygric—Water removed slowly enough to keep soil wet for most of the growing season; permanent seepage and mottling; gleyed (greenish-blue-grey)

mottles common in the soil profile.

Hydric—Wet; periodically or often flooded by water. Water removed so slowly that water table is at or above soil surface all year; gleyed mineral or organic

soils.

https://doi.org/10.1371/journal.pone.0189444.t001
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(Spearman’s rho) were expressed as a function of distance (i.e. correlograms) considering the

centroid of the spatial unit as the reference point. Similarly, we assessed spatial coherency

among mean annual temperature and yearly precipitation time series. We simulated tempera-

ture and precipitation (1901–2012) for each centroid of the spatial unit with the BioSIM sto-

chastic weather generator [47]. BIOSIM provides forecasts based on regional air temperature

and precipitation, interpolated from nearby weather stations and adjusted for elevation and

location differentials with regional gradients. To remove long-term trends and isolate interan-

nual changes, climate time series were standardized using the same procedure as used for tree-

ring time series.

We also assessed the coherency of master chronologies by analyzing correlations between

our chronologies and classic neighbouring reference chronologies built at the stand scale. For

the area under study, nine black spruce reference chronologies from the International Tree-

Ring Data Bank (ITRDB) and an additional seven black spruce reference chronologies from

the Réseau d’étude et de surveillance des écosystèmes forestiers (RESEF) monitoring network

[48] were available. From the nine ITRDB chronologies, only four included the raw tree-ring

series, allowing us to perform a uniform data standardization. Out of these four ITRDB chro-

nologies, one displayed EPS values below 0.85 for the 1900–1988 period, and was thus rejected.

The remaining ten chronologies (three from the ITRDB and seven from the RESEF) are well

distributed spatially (Fig 1), contain 24 to 50 trees, and display mean correlations to the master

chronology, EPS value and Rbar of 0.62 (range 0.52–0.73), 0.95 (range 0.91–0.98) and 0.43

(range 0.31–0.55), respectively (Table 2). We assessed the coherency of new master chronolo-

gies by calculating Spearman correlations between independently built chronologies and the

ten neighbouring classic reference chronologies at the two finest spatial scales (district and

landscape). We limited the comparison to chronologies located within a 40-km radius (dis-

trict) and 80-km scale (landscape). The extent of the radius was determined as a reasonable

trade-off between spatial proximity and the number of chronologies.

Overall, our validation process is similar to the framework used for building the Forest

Inventory and Analysis (FIA) tree-ring data set in the U.S. where quality control was con-

ducted by comparing chronologies with the closest available public chronology from the

ITRDB and with unpublished chronologies in gap areas, and by using the COFECHA program

to assess the quality of measurements and dating [26].

Table 2. Characteristics of the reference crossdated black spruce chronologies used to validate the newly formed chronologies.

Name Source Location N trees N cores Range used EPS Rbar Mcor

Ref054 ITRDB 50.03, -71.48 24 2 1905–1988 0.932 0.365 0.583

Ref055 ITRDB 50.17, -68.17 26 2 1912–1988 0.925 0.335 0.567

Ref075 ITRDB 50.02, -74.45 24 2 1901–1988 0.905 0.314 0.518

Ref202 RESEF 48.24, -70.35 45 2 1923–1996 0.959 0.434 0.641

Ref203 RESEF 48.81, -72.77 39 2 1923–1995 0.963 0.418 0.628

Ref204 RESEF 49.21, -73.65 30 2 1941–1996 0.965 0.506 0.649

Ref404 RESEF 47.90, -74.63 41 2 1941–1996 0.978 0.547 0.660

Ref801 RESEF 48.37, -77.12 49 2 1940–1997 0.977 0.488 0.664

Ref902 RESEF 48.88, -69.08 50 2 1932–1995 0.982 0.549 0.733

Ref1001 RESEF 49.83, -74.96 48 2 1942–1996 0.962 0.369 0.577

Note: Mcor, mean correlation of individual residual series with their corresponding master chronologies; Rbar, mean correlation between all pairs of residual

series; EPS, expressed population signal.

https://doi.org/10.1371/journal.pone.0189444.t002
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Results

Reliability of the computed chronologies

Depending on the spatial scale considered, our iterative selection procedure retained 35.7% to

73.2% of all available samples, and 60.7% to 81.2% of all sites, the number and proportion of

selected trees and sites (inventory plots) were decreasing as the grouping area increased (Table 3).

As compared to the initial selection with the iterative procedure, comparable sample selection

ratios were observed when rejecting chronologies with EPS values lower than 0.85, except for the

finest spatial scale. In those cases, the selection ratio was considerably lowered by the EPS criteria

due to the low sample frequencies per spatial unit (Table 3). Using the soil physical environment

for grouping slightly increased the number of sites and trees retained by the iterative procedure

and slightly improved the quality of the valid chronologies (EPS, Mcor, and Rbar, Table 3). It

might have been interesting to detail whether there were differences in chronologies among soil

physical environment types, but this analysis was beyond the scope of the study. The number of

valid chronologies generated also depended on the spatial scale considered, with one chronology

covering 100% of the territory being generated at the meridional scale and 562 chronologies cov-

ering 35% of the territory being generated at the smallest, district, scale. Their reliability, as indi-

cated by Mcor and Rbar statistics, generally decreases as the grouping area increases.

Signal coherence across space and with neighbouring reference

chronologies

The distance correlogram computed from correlations between tree-ring and climate chronol-

ogies displays a strong spatial autocorrelation (Fig 3). The negative effect of distance on the

common signal between master chronologies can be described as non-linear exponential

decay, with the highest rate of coherence loss at short distances, from rho = 0.75±0.12 between

30 km-distant populations to rho = 0.51±0.13 between 180 km-distant populations. Popula-

tions separated by more than 1,220 km still present a common signal (asymptotic rho = 0.12

±0.004, Fig 3). This non-linear, negative relationship is similarly observed at all spatial scales.

Fig 3 also illustrates that coherence over distance is much higher for mean annual temperature

chronologies than yearly precipitation chronologies and ring-width signals.

Fig 4 summarizes the analysis of correlations between valid master chronologies built at the

two finest spatial scales (district and landscape) and neighbouring reference chronologies built

at the stand scale. The interannual growth variations of the newly formed chronologies are

well synchronized with reference chronologies at both spatial scales. On average, Spearman’s

correlation coefficients between newly formed chronologies and reference chronologies ran-

ged from 0.37 to 0.69 for the chronologies built at the district scale, while they ranged from

0.52 to 0.75 for the chronologies built at the landscape scale (Fig 4). For seven out of ten refer-

ence chronologies, the fit with the reference chronology was slightly better with chronologies

built at the landscape scale as compared to chronologies built at the finest spatial scale (ecologi-

cal district).

Probability of false-positive selection and possible hidden signals

First-order autocorrelation of individual standardized series was, on average (±1 SE) 0.0176

±0.0003 revealing a low probability of false-positive selection associated to the remaining auto-

correlative structure in standardized series. Our analysis revealed that the chronologies formed

with the selection procedure represent the largest fraction of the trees sharing a common signal

and that no coherent signal may be identified among a large part of the rejected series (Fig 5).

The computation of correlations between rejected residual series and the retained chronology

Tree-ring signal from extensive forest inventory data
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for each spatial scale confirmed that >80% of rejected residual series are significantly corre-

lated to the retained chronology at P<0.05 when lagged by one to five years.

Principal component analysis also revealed that selected series among each group exhibit a

common dominant signal across the samples (Fig 6) and confirmed that the rejected series do

Table 3. Summary of the selection process leading to the formation of valid black spruce chronologies (EPS� 0.85, 1900–2012) from the broadest

to the finest spatial scales with and without considerations of the soil physical environment type (+soil).

Spatial

scale

Median

area (km2)

Selected series

with iterative

procedure

Selected series

with chronology

EPS� 0.85

Valid chronological statistics*

Sites (%) Trees

(%)

Sites (%) Trees

(%)

N Covered

area (%)

Mean series

frequency in

chronology [range]

Mean correlation to

master chronology

[range]

Rbar

[range]

Meridional 583,077 20,709

(60.7)

33,634

(35.7)

20,709

(60.7)

33,634

(35.7)

1 100 33,634 0.34 0.12

+ soil - 21,228

(62.2)

35,153

(37.4)

21,228

(62.2)

35,153

(37.4)

10 100 2,318 [1,131–13,314] 0.35 [0.34–0.39] 0.13

[0.11–

0.15]

Domain 81,193 21,820

(64.0)

37,384

(39.7)

21,817

(64.0)

37,377

(39.7)

5 97.8 8,006 [167–13,200] 0.37 [0.32–0.40] 0.15

[0.11–

0.17]

+ soil - 22,517

(66.0)

39,354

(41.8)

22,418

(65.7)

39,181

(41.6)

40 97.8 644 [46–6 595] 0.38[0.32–0.47] 0.15

[0.10–

0.20]

Sub-

domain

39,798 23,565

(69.1)

42,164

(44.8)

23,554

(69.1)

42,142

(44.8)

9 96.8 4,947 [156–10,495] 0.38 [0.33–0.40] 0.17

[0.12–

0.20]

+ soil - 24,276

(71.2)

44,039

(46.8)

24,088

(70.6)

43,707

(46.4)

72 96.8 372 [41–4,869] 0.39 [0.32–0.46] 0.17

[0.09–

0.24]

Region 11,562 25,436

(74.6)

47,461

(50.4)

25,373

(74.4)

47,350

(50.3)

41 94.7 771 [92–4,096] 0.38 [0.31–0.43] 0.16

[0.10–

0.22]

+ soil - 26,039

(76.4)

49,939

(53.1)

24,475

(71.8)

46,353

(49.2)

190 94.7 142 [30–1,794] 0.40 [0.31–0.48] 0.18

[0.09–

0.27]

Sub-region 6,589 25,568

(75.0)

48,040

(51.0)

25,466

(74.7)

47,815

(50.8)

59 93.5 519 [49–3,903] 0.40 [0.31–0.47] 0.17

[0.10–

0.27]

+ soil - 26,314

(77.2)

51,105

(54.3)

23,959

(70.3)

45,861

(48.7)

228 89.5 124 [29–1,794] 0.40 [0.31–0.51] 0.18

[0.09–

0.32]

Landscape 2,559 26,449

(77.6)

51,123

(54.3)

26,169

(76.7)

50,492

(53.7)

146 88.9 263 [49–1,598] 0.40 [0.31–0.47] 0.18

[0.10–

0.30]

+ soil - 27,494

(80.6)

56,040

(70.2)

21,409

(62.8)

42,151

(44.8)

366 81.1 82 [7–642] 0.42 [0.29–0.70] 0.19

[0.08–

0.46]

District 203 28,841

(84.6)

61,950

(65.8)

18,744

(55.0)

38,640

(41.1)

562 34.9 59 [18–608] 0.43 [0.31–0.55] 0.20

[0.09–

0.41]

+ soil - 27,698

(81.2)

68,938

(73.2)

6,702

(19.7)

14,586

(15.5)

288 16.2 45 [7–294] 0.45 [0.33–0.70] 0.21

[0.09–

0.46]

* All statistics are medians of the population.

Rbar, mean correlation between all pairs of residual series.

EPS, expressed population signal.

https://doi.org/10.1371/journal.pone.0189444.t003
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not share common “hidden” signals. As mentioned earlier, our analysis rather suggests that a

vast majority of the rejected series are simply incorrectly dated. Consequently, their signals

were asynchronous and incoherent with the population signal.

Segmental crossdating analyses of rejected series against their respective regional chronolo-

gies revealed that low correlations between the rejected series and regional chronologies

(mean Pearson coefficient (± 1 SE) = -0.12 ± 0.01) can be improved considerably (mean Pear-
son coefficient (± 1 SE) = 0.70 ± 0.01) by selecting segments which correlated higher at some

position other than where it has been originally dated (Fig 7).

Discussion

Reliability of the computed chronologies

The strong spatial autocorrelation among independently-built chronologies as well as their

high coherence with reference chronologies built at the stand scales shows that coherent inter-

annual growth signals can be extracted from NFI increment core samples at various spatial

scales (see next section). Our first hypothesis was confirmed as the strength (Mcor and Rbar)

of valid black spruce tree-ring signals (EPS� 0.85) decreased from the local to broad scale

(Table 3). The mean correlation of individual series to their master chronologies (Mcor) is

nevertheless only slightly related to the spatial dispersion of the samples forming the chronolo-

gies. The Mcor statistic is indeed higher at finer spatial scales of sample agglomeration, but

decreases exponentially as sample dispersion increases. These results suggest that broad-scale

climate drivers partly regulate interannual tree growth variations over a broad spatial scale, but

that locally, coherence in tree-ring chronologies is higher as they integrate tree response to

local disturbances and smaller-scale climatic variability. Variability in growth response to cli-

mate due to tree’s genetic origin may also play a role in the observed pattern.

Accordingly, the proportion of individual series showing a coherent signal and retained by

the selection procedure also decreased as sample dispersion increased. At the finest spatial

scale studied (ecological district, median area 228 km2), nearly two thirds of the individual

Fig 3. Average effect of geographical distance on the similarity between tree-ring width index, yearly

precipitation and mean annual temperature times series built at the landscape scale. Spearman

correlations, averaged per binned distance (30-km intervals), were used to compare chronologies. The blue

area represents the standard deviation from the means. The exponentially decreasing pattern is identical

across all spatial scales.

https://doi.org/10.1371/journal.pone.0189444.g003
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series (65.8%) from the large majority of the sites (84.6%) showed coherent tree-ring signals.

This contrasts with the broadest spatial scale where only 35.7% of the series from slightly more

than half of the sampled sites (60.7%) showed coherent signals. The lower sample selection ratio

associated with broad-scale computations may be associated with the spatial variability of tree

growth drivers inducing local or individual tree growth responses that could be asynchronous

Fig 4. Comparison of the ring-width index (rwi) from ten crossdated reference chronologies (grey)

against neighbouring new chronologies (red) built at the district scale (median area: 203 km2) and

landscape scale (median area: 2,259 km2) grouped by soil physical environment type. Only

chronologies located within a 40-km radius (district scale) or 80-km radius (landscape scale) of the reference

chronologies were used. Radius was determined as the distance between the centroid of the spatial unit and

the location of the stand sampled for the reference chronology. Average Spearman correlations (ρ) and

associated standard deviations are shown.

https://doi.org/10.1371/journal.pone.0189444.g004
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at broader scales. For example, trees may respond locally to a drought stress or an insect out-

break that blurs the broad-scale climate signal. These chronologies may exhibit high local coher-

ency while being incoherent with the broad-scale signal. Consequently, these series are retained

when the selection procedure is applied locally, but rejected by the selection procedure applied

over a broad spatial scale. Series may also be rejected because they do not respond to interan-

nual climate variability due to their growing conditions (i.e. suppressed or declining trees). At

all spatial scales, however, additional analyses suggest that the vast majority of rejected series

were simply incorrectly dated (see following sections).

Our analysis also revealed that constraining the variability associated with soil physical

environments when computing chronologies increased the number of sites and trees retained

by the selection procedure and slightly improved the strength of the chronologies (Mcor and

Rbar). Considering soil physical environment reduces inter-site variability and thus slightly

increases inter-tree signal coherence and the reliability of the computed chronologies. Bio-

physical variables affecting site quality and tree growth also influence inter-tree competition

Fig 5. Average number of residual tree-ring series per spatial unit for ecological districts, landscape units, and sub-

regions (in black). In addition to the average number of selected series per spatial unit (deep blue), the figure also displays

groups of significantly correlated series when selected series are excluded and the filtering procedure is repeated on

remaining data, while the grey bar represents the number of remaining series after five iterations of the filtering procedure.

Error bars are standard deviations from the means.

https://doi.org/10.1371/journal.pone.0189444.g005

Fig 6. Principal component analysis biplots (scaling type 2) of residual tree-ring series for the most abundant spatial units at the

district, landscape, and sub-region scale. Principal components 1 and 2 are displayed. Selected residual series are in deep blue and located

at one end of PC1, while other colours represent significantly correlated groups of rejected series when selected series were excluded and the

filtering procedure was repeated on remaining data. Lastly, the grey dots represent the remaining rejected series after five iterations of the

filtering procedure.

https://doi.org/10.1371/journal.pone.0189444.g006
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and thus their sensitivity to climate variability. It has been demonstrated, for instance, that soil

organic matter thickness might affect black spruce climate–growth relationships [8,49] which

is in good agreement with our observation.

Nevertheless, taking into account soil physical environment types for sample stratification

inevitably results in lower sample replication within each stratum. Given that the EPS criterion

is highly sensitive to sample replication, a higher fraction of the chronologies was thus rejected

by the EPS criteria when soil physical environment type was considered (Table 3). Accord-

ingly, comparable sample selection ratios were observed whether or not chronologies with EPS

values lower than 0.85 were rejected, except for the finest spatial scale where the selection ratio

was considerably lowered by the EPS criteria due to the low sample replication within each

stratum.

Spatial variations in climate, coupled with spatial and temporal variability in the distur-

bance regime, necessarily induce noise in regional chronologies. The spatial scale at which

tree-ring signals should be analyzed is based on the study objectives. The weaker coherence in

tree-ring signals observed at broad spatial scales is compatible with those of higher within-plot

Fig 7. Distribution of segmental coefficients of correlation between rejected series and their

respective landscape chronologies at the point of dating (red area, r = -0.12 ± 0.01), and at position

(from 5 years earlier to 5 years later) which correlated higher with landscape chronologies than where

it has been originally dated (blue area, r = 0.70 ± 0.01). Segment tested are 22 years long (1944–1965,

1955–1976, 1966–1987) restricting analyses to the 1944–1987 period. Dotted lines illustrate median values.

https://doi.org/10.1371/journal.pone.0189444.g007
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correlations in tree-ring signals compared to between-plot correlations [10]. Although coher-

ence in tree-ring signals is weaker when computed over a broad spatial scale, it nevertheless

assigns more weight to commonly shared growth patterns and reduces the emphasis on local,

non-climatic factors [9,15].

Spatial coherence of chronologies

The strong spatial autocorrelation reported in Fig 3 confirms our second hypothesis that spa-

tial coherence among master chronologies decreases with geographical distance. Correlograms

of ring width time series compare very well with those of Wettstein et al. [16] who reported

correlations between 762 standardized site chronologies (from the ITRDB), distributed

throughout the Northern hemisphere as a function of geographic distance. Their analysis

revealed that regionally dependent and species-specific ring width–local climate relationships

translate into regionally dependent and species-specific correlograms of ring width time series.

Ring width and yearly precipitation chronologies exhibit weaker spatial coherence than

mean annual temperature, confirming that standardized ring width time series not only reflect

interannual temperature variability, but are also governed by factors related to water regime

and various climate events inducing interannual growth variations [31]. Many studies have

indeed documented how tree growth at northern latitudes may respond to a variety of climate

conditions, including seasonal temperature and precipitation, short-term events such as

drought and heat waves, lagged effects from previous year conditions, snowfall, and melt tim-

ing (e.g. [31,50,51]).

In addition to the various climatic factors, non-climatic factors (e.g. insect defoliators,

inter-tree competition, tree age, and site characteristics) also induce additional spatial variabil-

ity in standardized ring width time series. A large part of these non-climatic signals was

removed by the standardization processes; however, depending on the model flexibility used

for standardization, non-climatic signals may partly remain in the ring width time series even

after standardization. Accordingly, Wettstein et al. [16] observed that high-pass filtered ring

widths series that emphasize year-to-year variability in tree-ring series exhibit higher spatial

coherence than low-pass filtered ring width series. We also acknowledge that errors associated

with ring width measurements and dating also induce noise and contribute to weakening the

spatial coherence in ring width time series. Researchers should thus be cautioned that all the

factors mentioned above, alone or in combination, can reduce the spatial coherence of growth

signals as compared to mean annual temperature chronologies.

Master chronologies built at the two finest spatial scales (district and landscape) are also

coherent and very well synchronized with neighbouring classic reference chronologies built at

the stand scale (Fig 4). Notably, the marked, but spatially asynchronous, growth decrease of

black spruce trees at the end of the 1970s in response to the last spruce budworm outbreak is

clearly visible in many chronologies and the signal is well synchronized with the reference

chronologies [52]. Interannual growth variations of lower amplitude that were presumably

associated with interannual climate variability were also very well synchronized with the sig-

nals of the reference chronologies.

Factors limiting use of chronologies for extracting climate signals

Overall, many series were rejected for every spatial scales studied because their signals were

incoherent with the master chronology (Table 3). Many reasons may explain the incoherence

with the master chronology. At the stand level, inter-tree competition and edaphic properties,

known to influence growth responsiveness to climate [8,53,54], and local small-scale distur-

bances (e.g. partial windthrow, partial cutting, and low to moderate insect defoliation) may
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induce specific tree-ring signals that are incoherent with the average signal identified at

broader spatial scales. Spatial variability in climate and microclimate may also induce specific

regional tree growth responses that differ from the broad-scale signal. Accordingly, over broad

spatial scales, fewer trees showed coherent signals with the master chronologies and were

retained by our selection procedure as compared to local compilations (Table 3).

The selection procedure was also slightly biased toward the rejection of young trees, pre-

sumably because their chronologies were not long enough to be statistically correlated with the

broad-scale signal of the average chronology or because of a divergent growth–climate rela-

tionship between young and old trees [55]. There is indeed evidence that trees at young growth

stages are driven primarily by inter-tree competition for light and much less by climate varia-

tion, such that climate signals are reduced [53]. An alternative but not mutually exclusive

hypothesis is that young fast growing trees growing in open stand conditions are less sensitive

to climate variability compared to older trees.

Missing and false rings are generally perceived as a common source of error in tree-ring

research. In certain years characterized by unfavorable growth conditions, a tree may not

develop an annual ring (missing ring) because of a lack of cambial activity [46]. However, such

behavior is rather uncommon in temperate and boreal trees [56]. The formed rings can also

be very thin (microrings) and hardly detectable or they may be lacking at some point on the

tree (locally absent) and consequently undetectable in a core sample. In addition, specific cli-

matic conditions during the growing season may translate into the formation of a false ring (or

double ring) [57]. Missing and false rings can only be identified and located by crossdating.

Chronological statistics – coupled with the high correlation among independently-built NFI

chronologies and with reference chronologies built at the stand scale – nevertheless suggest

that these growth anomalies do not have significant impacts on the quality of the NFI chronol-

ogies. The high sample replication and their wide distribution reduce the likelihood that all

trees within a population will exhibit a synchronous missing or false ring.

The low residual first-order autocorrelation of individual standardized series revealed a low

probability of false-positive selection associated to the remaining autocorrelative structure in

standardized series. The computation of correlations between rejected residual series and the

retained chronology confirmed that a large part of the rejected residual series are significantly

correlated to the retained chronology when lagged by one to five years. In addition, segmental

crossdating analyses of rejected series against their respective regional chronologies revealed

that series crossdating can be improved considerably by selecting segments which correlated

higher at some position (from 5 years earlier to 5 years later) other than where it has been orig-

inally dated. Such results suggest that a vast majority of rejected series are simply incorrectly

dated and that crossdating of many rejected series may have been improved by implementing

a quality control procedure to validate tree ring measurements and dating during sample

processing.

A growing number of studies are revealing that there is a large underappreciated problem

with tree ring data, which is that tree ring sampling procedures may lead to spurious growth

trends as sampled trees are not representative of the entire cohort of trees that lived in the past

[20,58–60]. This is particularly apparent in tree ring studies, where only living, dominant and

co-dominant trees are sampled [20,58,59]. Systematic and relatively large sampling biases in

tree ring studies are practically unavoidable. Just like the crossdating approach, our selection

procedure is inevitably biased toward the selection of trees showing a common signal rejecting

trees exhibiting incoherent signals. This has no implication for studies aiming to reconstruct

high frequency historical climate variation from tree ring, but it may lead to biased interpreta-

tions and conclusions for studies documenting species-specific growth response to climate

variability as growth-climate correlations would be overestimated in comparison with the
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entire tree population in a region. As a general statement, we therefore recommend great cau-

tion in interpreting results from tree ring studies and caution that sampled trees are rarely rep-

resentative of the entire population.

Conclusion

In this study, we developed a procedure to select valid individual tree-ring width time series

from an extensive collection of ring width measurements from nearly 94,000 black spruce

trees distributed over a 500,000 km2 area and collected as part of the NFI in Quebec, Canada.

Our results confirm that coherent signals may be extracted from large, raw increment core

measurements and used for dendroclimatic investigations. Although signal coherency

decreases with geographical distance between sample sites, the remaining signal is representa-

tive of large regional drivers such as climate. We thus conclude that tree-ring data from NFIs

provide an extraordinary opportunity to strengthen the spatial coverage of tree-ring data in

terms of climate zone, species composition, and forest productivity, and to improve coordina-

tion with other contemporary measurements of forest growth in order to provide a better

understanding of tree growth–climate relationships over broad spatial scales.
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temporaires, Édition 2016 [Internet]. 2016. Available: https://www.mffp.gouv.qc.ca/publications/forets/

connaissances/Norme-PET.pdf

36. Ministère des Forêts de la Faune et des Parcs. Norme d’inventaire écoforestier, placettes-échantillons
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no 115. 1994. Available: http://www.mffp.gouv.qc.ca/publications/forets/connaissances/recherche/

Ouimet-Rock/Memoire116.pdf

Tree-ring signal from extensive forest inventory data

PLOS ONE | https://doi.org/10.1371/journal.pone.0189444 December 27, 2017 19 / 20

https://doi.org/10.5194/bg-9-2523-2012
https://doi.org/10.1111/gcb.12400
http://www.ncbi.nlm.nih.gov/pubmed/24115302
https://doi.org/10.1073/pnas.1610156113
http://www.ncbi.nlm.nih.gov/pubmed/27956624
https://doi.org/10.1111/gcb.13072
http://www.ncbi.nlm.nih.gov/pubmed/26507106
https://doi.org/10.1126/science.aaf4951
https://doi.org/10.1126/science.aaf4951
http://www.ncbi.nlm.nih.gov/pubmed/27313044
https://doi.org/10.1111/j.1365-2699.2007.01816.x
http://www.mffp.gouv.qc.ca/publications/forets/connaissances/Norme-cartographie-ecoforestiere.pdf
http://www.mffp.gouv.qc.ca/publications/forets/connaissances/Norme-cartographie-ecoforestiere.pdf
https://www.mffp.gouv.qc.ca/publications/forets/connaissances/Norme-PET.pdf
https://www.mffp.gouv.qc.ca/publications/forets/connaissances/Norme-PET.pdf
https://mffp.gouv.qc.ca/publications/forets/connaissances/Norme-PEP.pdf
https://mffp.gouv.qc.ca/publications/forets/connaissances/Norme-PEP.pdf
https://doi.org/10.1016/j.ecoleng.2008.01.004
https://mffp.gouv.qc.ca/english/publications/forest/publications/ecological.pdf
https://mffp.gouv.qc.ca/english/publications/forest/publications/ecological.pdf
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/j.dendro.2008.01.002
http://www.r-project.org/
https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
https://doi.org/10.1016/j.dendro.2017.03.005
http://www.mffp.gouv.qc.ca/publications/forets/connaissances/recherche/Ouimet-Rock/Memoire116.pdf
http://www.mffp.gouv.qc.ca/publications/forets/connaissances/recherche/Ouimet-Rock/Memoire116.pdf
https://doi.org/10.1371/journal.pone.0189444


49. Drobyshev I, Simard M, Bergeron Y, Hofgaard A. Does Soil Organic Layer Thickness Affect Climate–

Growth Relationships in the Black Spruce Boreal Ecosystem? Ecosystems. 2010; 13: 556–574. https://

doi.org/10.1007/s10021-010-9340-7

50. Vaganov E, Hughes MK, Kirdyanov A. Influence of snowfall and melt timing on tree growth in subarctic

Eurasia. Nature. 1999; 400: 149–151. https://doi.org/10.1038/22087

51. Duchesne L, Houle D, D’Orangeville L. Influence of climate on seasonal patterns of stem increment of
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