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A B S T R A C T

Accurate estimation of aboveground biomass (AGB) using remote sensing data is still challenging and an ap-
proach based on an understanding of forest disturbance and succession could help improve AGB estimation. In
the boreal forest of North America, time since last fire (TSLF) is seen as a useful variable to explain post-fire
successional change and aboveground biomass (AGB). Within a large study area (> 200 000 km2) located in the
northeastern American boreal forest, we compared remotely sensed biomass estimates of MODIS (Moderate
Resolution Imaging Spectroradiometer), GLAS (Geoscience Laser Altimeter System) and ASAR (Advanced
Synthetic Aperture Radar) with inventory-based estimates derived from ground plots, and forest maps at a
spatial resolution of 2-km2. We identified that TSLF could explain the error observed in remotely sensed AGB
estimates (MODIS (45%), GLAS (47%) or ASAR (23%)) when associated with surficial geological substrate in-
formation at that scale. Our results therefore show the importance of TSLF as a potential ancillary variable for
improving the accuracy of remotely sensed AGB estimates in North American boreal forests.

1. Introduction

Forested biomes cover approximately 3.7 billion ha (FAO, 2015),
and contribute significantly to the global carbon (C) cycle (McGuire,
2002), notably circumboreal forests (32% of global forest carbon
stocks, Pan et al., 2011). In a recent study, Bradshaw and Warkentin
(2015) reported total carbon stocks of 367.3–1715.8 Pg (mid-
point=1095 Pg), which are about 3.8 times those estimated by Pan
et al. (2011) for boreal forests. These considerable differences indicate
that improvement is still required to increase the accuracy of C stock
estimates. Information on aboveground biomass (AGB) is used for as-
sessing forest ecosystem productivity (Malhi, 2012), and for supporting
bio-energy production (Mansuy et al., 2015).

Maps of AGB derived from remote sensing are fundamentally based
on the pixel-level application of empirical models relating spectral re-
flectance data to field measurements of biomass, themselves derived
from tree-level measurements and allometric equations or biomass ex-
pansion factors. Various sensors have different operating potentials and
constraints. More specifically, optical multispectral imagery (e.g.
Moderate Resolution Imaging Spectroradiometer, MODIS) and short-
wavelength radar data (e.g. C-band Advanced Synthetic Aperture

Radar, ASAR) are limited by saturation regions of high biomass and
complex canopy structures (Turner et al., 1999; Pflugmacher et al.,
2012). LiDAR (Light Detection and Ranging) based active remote sen-
sing technologies can measure canopy height and crown dimensions
directly, through measurements of distance between the sensor and
target (Drake et al., 2003), thereby overcoming data saturation in
biomass estimation (e.g., Geoscience Laser Altimeter System (GLAS)
sensor, Zhang et al., 2014a; Zhang et al., 2014b).

The comparisons of biomass maps from different sources of remote
sensing data may also provide useful information from which more
accurate AGB estimates can be derived (e.g., Avitabile et al., 2011;
Mitchard et al., 2013, Mitchard et al., 2014). Hill et al. (2013) found
only low correlations between the various estimates, from nine different
studies (e.g., Saatchi et al., 2011; Baccini et al., 2012) based on MODIS
and GLAS data acquired across tropical forests at the extent of con-
tinental Africa.

Ground data is also often insufficient to properly estimate errors in
remotely sensed estimates (Hill et al., 2013; Mitchard et al., 2014). The
addition of prior vegetation recovery trends, disturbance histories, and
known forest structural attributes to remote sensing data is known to
improve the accuracy of biomass estimation (Main-Knorn et al., 2011;
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Pflugmacher et al., 2014). However, remotely sensed AGB estimates
seldom consider the spatial knowledge of recorded disturbances and
recovery patterns of the forest under study (Chu and Guo, 2014).

In North American boreal ecosystems, changes in C storage over
time are related to fire events (Harden et al., 2000), which are highly
stochastic in both time and space (Girardin et al., 2013). A disturbance
regime may be characterized by disturbance frequency, size and se-
verity (Bergeron et al., 2002). Small fires are most frequent, but in-
frequent large fires predominantly shape the boreal landscape mosaic
(Johnson et al., 1998; Bergeron et al., 2004). Time since last fire (TSLF)
is the most significant predictor of postfire canopy recovery (Mansuy
et al., 2012), which is itself related to changes associated with forest
structural attributes over time (e.g. canopy cover) that control AGB at
the scale of landscapes (Irulappa Pillai Vijayakumar et al., 2016).
However, burn severity varies inside fire perimeters (Johnstone et al.,
2010; Jin et al., 2012), blurring the relationship between disturbance
history, post-fire canopy recovery and AGB (Lecomte et al., 2006;
Chaieb et al., 2015). Biomass estimation must therefore be done at a
scale that matches that of the dominant disturbance, namely fire
(Frolking et al., 2009).

The objectives of this study were 1) to compare biomass (AGB) maps
derived from MODIS, GLAS, and ASAR with those obtained from an
AGB model based on ground-inventory data amassed over a large area
of the boreal forest in eastern Canada, and 2) to assess if the error
observed with remotely sensed AGB estimates (differences between
inventory-based AGB and remotely sensed AGB estimates) can be ex-
plained by TSLF, vegetation cover and geological substrate information.

We obtained AGB estimates based on MODIS and ASAR data col-
lected for the study area from Beaudoin et al. (2014) and Thurner et al.
(2014), respectively. We developed an AGB model for GLAS data fol-
lowing a methodology successfully developed by Zhang et al. (2014b).
We compared these estimates with those of an inventory-based AGB
map (Irulappa Pillai Vijayakumar et al., 2016) elaborated from aerial
photo-interpreted stand maps and a large number of forest inventory
plots.

2. Material and methods

2.1. Study area

The region (Fig. 1) selected for this study is situated in eastern
Canada (49°N to 52°N and 66°W to 79° 30’W, area: 217,000 km2), and is
entirely included within the boreal black spruce (Picea mariana (Mill.)
BSP) -moss bioclimatic domain (Robitaille and Saucier, 1998). This

choice was based on the availability of fire history maps and forest
inventory data. The study area can be divided into a western and an
eastern regions that differ in biophysical environments and conse-
quently in fire regime and vegetation. The western region has an annual
precipitation of 700 mm y−1and a mean annual temperature of
−0.65 °C (Robitaille and Saucier, 1998). It characterized by relatively
short fire return intervals (270 years; Bergeron et al., 2004) and its
landscapes are dominated by post-fire tree species such as black spruce,
jack pine (Pinus banksiana Lamb.) and, to a lesser extent, by white birch
(Betula papyrifera Marsh.) and trembling aspen (Populus tremuloides
Michx.). The eastern region shows a wetter and cooler climate with an
annual precipitation between 1000 and 2000 mm y−1 and a mean an-
nual temperature of −1.5 °C (Saucier et al., 2009). Fire return intervals
are thus longer (> 500 years; Bouchard et al., 2008) and landscapes
host abundant fire-averse balsam fir (Abies balsamea[L.]Mill.), mixed
with black spruce.

2.2. General design

A general flow diagram of the data and methods used for AGB es-
timation and comparison is displayed in Fig. 2.

The successive steps of our research were:

1. First, obtain the inventory, MODIS and ASAR based AGB estimates
for our study region from Irulappa Pillai Vijayakumar et al. (2016),
Beaudoin et al. (2014) and Thurner et al. (2014), respectively.

2. Develop a model for predicting GLAS based AGB estimates with the
methodology of Zhang et al. (2014b).

3. Reproject remotely sensed AGB estimates and rescale them to a
common projection and resolution.

4. Compute the differences between inventory-based and remotely
sensed AGB estimates.

5. Explain the observed differences between inventory-based and re-
motely sensed estimates using TSLF, vegetation cover information
and geological substrate information.

We used for our model building process (steps: 2 and 5) non-para-
metric model Random Forests (RF). RF is a supervised learning algo-
rithm that develops non-parametric models without making any as-
sumption on the underlying distribution of the data. It randomly
subsamples data (bootstrap) such that 63% of data is utilized for
training and the remaining data is used for cross-validation. For each
bootstrap sample from the training data, decision trees are constructed
by choosing the best predictor variables to split data into homogenous

Fig. 1. Locations of the study area (dark outline) and training
datasets (grey areas) from the published studies (Le Goff et al.,
2007 and Lesieur et al., 2002).
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sets based on least mean square error. Decision trees are grown until
there is no more significant improvement in accuracy. Finally, ag-
gregation of decision trees is used for predictions. We used the fol-
lowing settings for each bootstrap iteration of RF models: 1), the
number of decision trees constructed during each run (ntree) was fixed
to 1000; 2), the number of predictor variables taken for constructing
each tree node (mtry) was set to one third of the number of variables
choosed for fitting a RF model; 3), the minimum size of the terminal
nodes (node size) was fixed to 5.

We developed RF models using the randomForest package for R
(Liaw and Wiener, 2002). The predictors for fitting RF modelswere
selected using the Boruta package in R (Number of iterations=1000;
number of trees=1000) (adapted from Kursa and Rudnicki, 2010). We
selected the six most important variables assessed by Boruta to fit
parsimonious and robust models (Thompson and Spies, 2009). Corre-
lation analyses were performed to detect collinearity between the se-
lected predictors (threshold: r> 0.70, Dormann et al., 2013) to avoid
problems of multicollinearity.

2.2.1. Estimation of AGB based on inventory data
We used the inventory-based AGB estimates of Irulappa Pillai

Vijayakumar et al. (2016) in which AGB values were estimated at a
spatial resolution of 2-km2 (1414 m×1414 m). This cell-size corre-
sponds to the minimum size for large fires included in the Canadian
large fire database. These large fires account for 97% of the total area
burned between 1959 and 1999 (Stocks et al., 2003). This resolution
also seemed adequate to circumvent confounding issues typically found
with finer resolution, such as the variation of post-fire forest recovery
patterns within burned areas due to the within-fire variability of fire
severity (Jin et al., 2012) and neighboring effects (Frelich and Reich,
1999).

Values of aboveground biomass carbon (ABC, being equal to 50% of
AGB, Gower et al., 1997) were first obtained from inventory plots
(temporary sample plot database; 400-m2, 1992–2003), and then suc-
cessively scaled to 14-ha tesserae and to 2-km2 cells, as in Irulappa
Pillai Vijayakumar et al. (2016). Key to this scaling exercise was the
availability of spatially explicit forest stand properties across the study
area with the SIFORT geospatial database (Spatial Information on
Forest Composition based on Tesserae, Pelletier et al., 2007) originating
from forest maps (1:15,000 scale) and elaborated by the Quebec Min-
istry of Natural Resources between 1990 and 1999 for its third in-
ventory program (1992–2002). The SIFORT database consists of a
mosaic of square tiles each covering an average area of 14 ha to which
were attributed the forest properties values of the stand located at the

tile centroid from inventory-based forest maps. Tiles whose centroids
fell on wetlands and peatlands, water, heaths, harvested land, insect-
killed stands or windthrows and human infrastructure were excluded
from the Irulappa Pillai Vijayakumar et al. (2016) dataset, leaving 89%
of the study area, or about 193,000 km2, to be used for AGB estimation.

A RF model of ABC (r2=0.50, RMSE=13.88 Mg ha−1) was trained
at the plot level by Irulappa Pillai Vijayakumar et al. (2016) using es-
timated ABC values and observed forest attributes and climate vari-
ables. This model was then used on all SIFORT tile centroids within a
training dataset, and the resulting estimates were then averaged among
tile centroids within 2-km2 cells to train another non-parametric RF
model at 2-km2 spatial resolution (r2=0.83, RMSE=0.28 Gg km−2)
with the objective of obtaining spatially continuous ABC estimates at
the 2 km2 spatial resolution for the whole study area. This training
dataset included all areas for which a TSLF value could be provided
from contemporaneous or historical fire maps and covered 43.8% of the
present study area (Fig. 1). Relative proportions of canopy cover den-
sity classes were the main variables influencing ABC estimates at the 2-
km2 spatial resolution. More detailed information is found in Irulappa
Pillai Vijayakumar et al. (2016).

2.2.2. Estimation of AGB from remote sensing data
We used three remote sensing data products (MODIS, GLAS and

ASAR) to estimate biomass at the 2-km2 scale. We selected these three
data sources to consider the most common types of sensors (passive
[optical multi-spectral] and active [radar and laser scanner]) used for
AGB estimation (Lu et al., 2014).

We first calibrated an AGB model with spaceborne GLAS LiDAR
canopy height data (Simard et al., 2011) by adapting the methodology
developed by Zhang et al. (2014b). Plot-level AGB values (n=8739,
third forest inventory [1992–2003], Ministry of Natural Resources of
Quebec) were estimated by converting diameter at breast height (DBH,
1.3 m) into biomass using species-specific allometric equations for
commercial tree species (Lambert et al., 2005; Ung et al., 2008), non-
commercial tree species (Ter-Mikaelian and Korzukhin, 1997), and
shrubs (Buech and Rugg, 1989). These estimates were summed at the
plot level. A random forest (RF) model was then developed to estimate
plot-level AGB from observed canopy height (dominant height of the
canopy, i.e., mean height of the dominant trees; Burkhart and Tomé,
2012), elevation and climate variables (Compo et al., 2011) (Table 1).
This model was then used to predict AGB across the study region using
the GLAS canopy height data at 1 km resolution. We tested for spatial
autocorrelation in model residuals to detect potential omission of im-
portant variables (Dormann et al., 2007). To this end, we computed

Fig. 2. General flow diagram.
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Global Moran's I, an index of spatial autocorrelation, as a function of
neighbouring distance (Moran, 1950).

We then extracted MODIS based AGB values for our study region
from the Canada-wide AGB spatial productof Beaudoin et al. (2014).
The authors mapped AGB at 250×250 m pixel resolution as a function
of MODIS spectral reflectance, climatic and topographic variables using
Canada's National Forest inventory photo-plots (2 km×2 km) (Gillis
et al., 2005) and a k nearest-neighbour (kNN) method. Each
2 km×2 km photo-plot consisted of forest polygons characterized by
cartographic attributes of vegetation composition, stand structure, and
AGB information based on the models of Boudewyn et al. (2007). They
rasterized AGB information from photo-plots to the 250 m×250 m
MODIS grid and used these photo-plot pixels as references to impute
AGB values to the rest of the study area.

We further obtained an AGB map based on ASAR data from Thurner
et al. (2014). This AGB map covers the Northern Hemisphere between
30°N and 80°N for boreal and temperate forests of North America,
Europe and Asia. It is based on estimates of growing stock volume
(volume of tree stems per unit area, m3 ha−1) obtained with the BIO-
MASAR retrieval algorithm developed for the Envisat/ASAR satellite
data at a spatial resolution of 0.01° (Santoro et al., 2011). BIOMASAR is
an automated approach for modeling growing stock volume as a func-
tion of radar backscatter. This technique is based on how forest struc-
tural properties affect the response of a radar signal. Volume estimates
were then converted to biomass. A more detailed explanation of this
product is given by Thurner et al. (2014).

We reprojected these biomass products of different resolution
(1 km2, GLAS biomass map; 250 m×250 m, MODIS biomass estimates,
Beaudoin et al., 2014; and 0.01° resolution, ASAR biomass estimates,
Thurner et al., 2014) to the same projection (North American Datum
1983; Lambert conformal conic projection) employing a nearest
neighbor resampling technique. We then performed a spatial aggrega-
tion by computing the mean value of remotely sensed AGB values for
pixel centers located within each 2-km2 cell, the scale of inventory-
based estimates.

2.2.3. Comparison of biomass maps
Our comparison analysis is affected by the physical principles of

data acquisition used in sensors and by the spatial resolution used for
the comparisons. Comparison of these products at a finer scale resolu-
tion was not considered so as to match the scale from which large fire
disturbances start to impact the forest landscape structure on a regional
scale (e.g. Johnson and Gutsell, 1994: Fig. 5; Frolking et al., 2009). The
inventory-based AGB map of Irulappa Pillai Vijayakumar et al. (2016)

was therefore of limited use to validate remote sensing products, but
was useful to show agreement or disagreement in the spatial trends
observed between remotely sensed and inventory-based estimates over
a large area. We considered a departure from the inventory-based map
as an error (i.e. a disagreement). Values of errors were used to test the
use of TSLF and other ancillary variables for improving AGB estimates
from satellites over large areas.

We first explored covariations between each of the GLAS, MODIS,
ASAR and inventory-based estimates in the training dataset using the
Pearson correlation coefficient accounting for spatial autocorrelation in
the SpatialPack package for R. We calculated the difference between
each of the GLAS, MODIS and ASAR-based AGB estimates, and the in-
ventory-based estimates of AGB for each 2-km2cell in the training da-
taset to identify potential ancillary variables. To this end, we used the
training dataset created by Irulappa Pillai Vijayakumar et al. (2015).
This training dataset consists of 34,234 2-km2cells. Cells were included
in this dataset for one of the following three reasons:50% or more of the
area of a 2-km2 cell was covered by a recent fire polygon (1970–2000,
from the SOPFEU, i.e. the Quebec forest fire control agency, Société de
protection des forêtscontre le feu) or by a fire polygon from history
maps (1880–2000) (Fig. 1). In addition, cells were included if they had
more than one inventory plot (third inventory program [1992–2003],
Ministry of Natural Resources of Quebec) dominated by post-fire tree
species (paper birch, trembling aspen, jack pine, black spruce) and
even-aged (oldest plot age was used as TSLF) (Bélisle et al., 2011).

We then developed RF models relating these map differences to
covariates (relative cell frequencies of SIFORT attributes, Table 1) and
observed TSLF at the 2-km2 scale. We also included indices of surficial
deposits in the models based on the results of Asner et al. (2010). Re-
sults of these non-parametric models are difficult to interpret and
synthesize. For this reason, we also analyzed the variation in remotely
sensed AGB estimates as a function of observed TSLF at the 2-km2 scale,
which is equivalent to producing AGB yield curves. This was intended
to provide insights on the relationship existing between remotely
sensed biomass estimates and TSLF at the scale of 2-km2.

3. Results

3.1. Estimation of AGB with GLAS canopy height data

AGB was moderately correlated with ground-measured canopy
height at the plot level (r=0.43, P<0.01). Variable importance rating
with the Boruta procedure further indicated that at that level, AGB was
also related to potential evapotranspiration (PET), precipitation,

Table 1
List of explanatory variables that were used to estimate AGB.

Relative frequencies of vegetation variablesa Physical site variables Climate variablesb

Species composition groups - Black spruce, balsam fir, jack
pine, intolerant hardwoods, mixed, other conifers and
no species composition but identified as a burned area,
following Gauthier et al. (2010).

Surficial deposit groupsa –VAVC (very abundant, very
coarse), MM (moderate, moderate), MAM (moderately
abundant, moderate), MAC (moderately abundant,
coarse), AC (abundant, coarse), ROC (rock) and ORG
(organic) (Mansuy et al., 2010).

Temperature (°C) –mean annual temperature
Total precipitation (mm year−1) –the mean of annual
total precipitation
Degree-days (°C year−1) – Annual growing degree-days
sum (above 5 °C)

Stand age classes −0 to 20 years, 21–40, 41–60, 61–80,
81–100, ≥ 101; young uneven-aged, and old uneven-
aged.

Elevation (m) - Derived for study units from SRTM DEM
(90 m resolution) (Van Zyl, 2001).

Growing season length (days year−1) –Duration of days
for which the mean temperature is above 5 °C

Stand height classes -> 22 m, 17–22 m, 12–17 m, 7–12 m,
4–7 m, 2–4 m, and 0–2 m.

Slope (°) - derived from elevation data in ArcGIS 10.0 Potential evapotranspiration (mm) – Annual total
potential evapotranspiration (PET, Dunne and Leopold,
1978)

Stand cover density classes -> 81%, 61–80%, 41–60%, and
25–40%.

Aridity index (mm year−1) –Accumulated monthly
water deficit (monthly Thornthwaite potential
evapotranspiration minus monthly precipitation)
Canadian drought code – Moisture content of the deep
compacted organic matter layer, 10–20 cm depth
(Amiro et al., 2001)

a Derived from SIFORT geospatial database.
b Derived from the 20CR project (Compo et al., 2011) with BioSIM (Régnière and St-Amant, 2008) for the period of 1971–2000.
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elevation, drought code, and growing season length (Table 1, Fig. 3a).
Elevation was not included given its strong correlation with growing
season length (r=−0.82, P<0.01). Overall, the prediction accuracy of
AGB remained moderate (i.e. r∈ [0.33, 0.66]) (r=0.54,
RMSE=33.21 Mg ha−1; Fig. 3b). Residuals were weakly spatially au-
tocorrelated (Global Moran's I statistic=−0.05, for distances< 20
km). With this RF, we extrapolated AGB to the entire landscape using
GLAS canopy height data at 1-km resolution.

3.2. Covariation of remotely sensed and inventory-based biomass estimates

AGB maps from MODIS and ASAR showed an expected pattern of
high and low values along an east-west gradient (Fig. 4b, d), in relation
with the fire regime gradient observed over the study area. Spatial
distributions of AGB estimated with MODIS and inventory-based data
also agreed with one another. When the inventory-based and MODIS
AGB maps were compared visually with fire disturbance history, both
showed low biomass values in recently burned areas (Fig. 4a, b). The
AGB estimates from ASAR also showed a similar degree of spatial
agreement but with lower values in recently burned areas (Fig. 4d). The
GLAS biomass map exhibited a very different spatial pattern of low and
high values along a north-south gradient (Fig. 4c) that could not be
associated with fire disturbance history.

When comparing remotely sensed estimates, MODIS estimates ex-
hibited the greatest correlation with inventory-based estimates
(r=0.56, P<0.01, RMSE =3.28 Gg km−2; Fig. 5b), when compared to
GLAS (r=0. 51, P<0.01, RMSE=2.45 Gg km−2; Fig. 5a) or ASAR
estimates (r=0.28, P<0.01, RMSE=4.04 Gg km−2; Fig. 5c).

Correlations among remotely sensed AGB estimates of MODIS, GLAS
and ASAR were also moderate: ASAR vs GLAS, r=0.38, P<0.01,
RMSE=4.15 Gg km−2 (Fig. 6a); ASAR vs MODIS, r=0.56, P<0.01,
RMSE=3.26 Gg km−2 (Fig. 6b); GLAS vs MODIS, r=0.38, P<0.01,
RMSE=4.05 Gg km−2 (Fig. 6c). AGB estimates from GLAS data were
higher, on average, than those from MODIS and ASAR (Fig. 6a, c).
Table 2 reports the correlation between remotely sensed and inventory
estimates after accounting for spatial autocorrelation.

3.3. Detecting potential ancillary variables for remotely sensed AGB
estimations

The relative proportions of the different cover density classes within
2-km2units were the most important potential ancillary variables when
training RF models with differences between remotely sensed (MODIS,
GLAS, ASAR) and inventory-based estimates (Fig. 7a–c). Other im-
portant variables were the relative proportions of the most dominant
surficial deposits (undifferentiated tills with moderate to abundant
stoniness, Table 1), and stony surficial deposits (Table 1). RF models
explained 28–50% of the variability observed between remotely sensed
and inventory-based estimates (MODIS, r2=0.50, RMSE=1.36 Gg

km−2; GLAS, r2=0.47, RMSE=1.56 Gg km−2; ASAR, r2=0.28,
RMSE=1.97 Gg km−2; Fig. 7d-f).

Differences between inventory-based and remotely sensed estimates
generally increased as a function of the percentage of closed cover
(summed frequency of three cover density classes: > 81%, 61–80%,
41–60%) (Fig. 8a–c). TSLF is also an alternative variable (Fig. 9a–c) to
reduce the disagreement existing between remotely sensed and in-
ventory-based estimates. Indeed, the percentages of variation that was
explained by models including TSLF (MODIS, r2=0.45,
RMSE=1.36 Gg km−2; GLAS, r2=0.47, RMSE=1.57 Gg km−2; ASAR,
r2=0.23, RMSE=2.04 Gg km−2; Fig. 9d–f) were similar to those of
models relying upon the relative abundances of cover density classes.

3.4. AGB yield curves with remotely sensed products

AGB yield curves based on MODIS estimates exhibited an expected
trend of biomass increase as a function of TSLF until 60–90 years, and a
decrease there after, which is consistent with curves based on inventory
data, but with lower median values (Fig. 10a–b). AGB estimates based
on GLAS data showed unexpectedly high values in recently disturbed 2-
km2 cells (TSLF<30 years) (Fig. 10c). AGB yield curves from ASAR
data exhibited a comparable trend of biomass increase as a function of
TSLF (Fig. 10d), but their median values were consistently lower than
GLAS, MODIS and inventory-based estimates.

4. Discussion

4.1. Interpreting covariation and spatial distributions of biomass estimates

Our analyses done at the 2-km2 scale have shown the existence of
moderate correlations between AGB estimates based on field inventory
data and remotely sensed biomass estimates (Fig. 5a–c). Correlation
was however lower with ASAR data, which can be explained by the fact
that ASAR AGB values were estimated with relationships established at
a worldwide scale (Chave et al., 2009), while GLAS and MODIS AGB
estimates were partially based on forest inventory data and region-
specific allometric equations.

Among the three remote sensing products, MODIS-based estimates
exhibited the highest correlation with inventory-based estimates
(r=0.56, P<0.01; Table 2). MODIS-based estimates were generated
using Canada's National forest inventory photo-plots as reference data,
themselves populated using provincial inventory data (Beaudoin et al.,
2014). MODIS and inventory-based AGB estimates are ultimately re-
lated to provincial plot data. However, despite their moderate corre-
lation, MODIS AGB estimates were consistently lower than inventory
estimates across our training area (Fig. 10b). These differences were
lower for recently disturbed cells (TSLF<30 years) and increased with
increasing TSLF, particularly for cells with a TSLF equal to 60–90 years
(Figs. 9a, d, 10b). Differences were particularly high when cells had

Fig. 3. Top six variables that were ranked by a random forest
model for estimating AGB, based on observed canopy height at
plot level (a); (b) density plot of observed vs predicted AGB by the
model based on observed canopy height at plot level.
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abundant closed canopy estimates with high biomass values (Fig. 8a;
Irulappa Pillai Vijayakumar et al., 2016). The underestimation of high
AGB values with MODIS has already been noted by Beaudoin et al.
(2014), and more generically with the kNN method by Magnussen et al.
(2010), and is related to saturation of MODIS reflectance at high bio-
mass and the averaging effect across the k nearest neighbors.

In spite of the strong correlation found by Zhang et al. (2014b)
between observed canopy height and AGB at the plot level, our esti-
mates based on the same approach showed only a moderate correlation

with observed canopy height (r=0.43, P<0.01). Differences in plot
selection can partly explain these contrasting results, since Zhang et al.
(2014b) calibrated their relationships with 75% of their plots non
randomly scattered across their study area but specifically located in
regions of high timber productivity. Tree species in high productivity
regions are generally taller and forest stands have higher volume and
biomass, where as in less productive regions, other factors, such as
stand density and species composition, might also become important
(Irulappa Pillai Vijayakumar et al., 2016). This would imply that

Fig. 4. Maps of AGB at the scale of 2 km2, based upon: inventory data
(a); MODIS data obtained from Beaudoin et al. (2014) (b); GLAS data
(c); ASAR data obtained from Thurner et al. (2014) (d).
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canopy height alone cannot fully explain variation of AGB variation for
our region of study, which contains a wide range of site productivities.

Inventory-based AGB estimates and GLAS-measured canopy height
were not correlated at the plot level in our training region (r=−0.03,
P>0.05). This lack of a relationship points to a difference of scale
between forest inventory observations and GLAS acquisitions (e.g.,
Zhao et al., 2009). Canopy height may be an important variable to

estimate biomass, but not at the spatial scale of 1 km2, at least at the
regional level. Pflugmacher et al. (2008) also suggested that GLAS es-
timates of biomass would be valuable on a global scale, but would differ
from inventory estimates at a regional scale. As an example, Margolis
et al. (2015) have reported at the continental scale for the boreal forest
of North America (area, 3.7 million km2) higher R2 values (0.59–0.79)
between inventory-based and GLAS-based AGB values, when the

Fig. 5. Density plots of inventory-based AGB estimates as a
function of remotely sensed AGB estimates at the scale of 2-km2:
(a) GLAS data; (b) MODIS data; and (c) ASAR data.

Fig. 6. Density plots of AGB estimates from remote sensing data:
(a) ASAR vs GLAS; (b) ASAR vs MODIS; and (c) GLAS vs MODIS.
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ICESAT-GLAS height metrics were used to scale up airborne LiDAR-
based estimates of AGB. Because of this potential scale mismatch pro-
blem, the GLAS-derived biomass map (Fig. 4c) showed greatly con-
trasting spatial differences when compared to spatial patterns of AGB
derived from MODIS, ASAR and inventory-based estimates. This mis-
match can also explain the unexpectedly high values in areas that were
recently disturbed by fire (Fig. 10c).

4.2. Consistency of results with comparable studies

Our results of moderate correlations between remotely sensed bio-
mass estimates for boreal forests in eastern Canada agree with those
from similar studies. For the Colombian Amazon forests (area of
165,000 km2), the GLAS biomass estimates of Saatchi et al. (2011) and
Baccini et al. (2012) overestimated AGB by 23% and 42% when com-
pared to those of Asner et al. (2012) that had been derived from field
plots and airborne LiDAR. Also, the GLAS biomass maps of Saatchi et al.
(2011) and Baccini et al. (2012) over- or under-estimated, respectively
ground-based estimates of AGB (n= 413, Amazon Forest inventory
network; Malhi et al., 2002) by more than 25% and also showed dif-
ferent spatial patterns (Mitchard et al., 2014). The observed gradient of
increasing AGB from SW to NE Amazonia was not replicated by either
remote-sensed product, and it was presumed that most of the errors
were related to regional variations in wood density and in height-

volume relationships (Mitchard et al., 2014).
Margolis et al. (2015) compared GLAS AGB estimates of Neigh et al.

(2013) with AGB estimates based on MODIS data (Beaudoin et al.,
2014) for 3.7 million km2 of the North American boreal forest. Differ-
ences in mean AGB densities between both maps (GLAS–MODIS) at the
scale of World Wildlife Fund eco-regions for eastern Canadian forests
and central Canadian Shield forests were 0.6 and 3.2 Mg ha−1, re-
spectively (Margolis et al., 2015, their Table 13). GLAS estimates of
total eco-region AGB were consistently higher than the MODIS-based
estimates of Beaudoin et al. (2014) for 16 of 18 the eco-regions in
Canada (Margolis et al., 2015).

4.3. Potential ancillary variables for remotely sensed AGB estimation

Identifying that TSLF, vegetation cover and geological substrate
information are able to explain 28–50% of the observed variability in
the differences between remotely sensed and inventory based AGB es-
timates is a new observation. It means that these are potential ancillary
variables for remote sensing data products when estimating AGB. At a
2-km2scale, TSLF could thus serve as a proxy for canopy cover density
with the benefit of possibly rectifying signal saturation in high biomass
values.

Problems of scale-matching were also identified in the present
study. In North American boreal ecosystems, successional dynamics are
characterized by fire disturbances and post-fire vegetation recovery,
both of which affect forest carbon stocks (Jones et al., 2013). Fire
disturbances occur at a scale larger than most existing spatial resolu-
tions of satellite data (Frolking et al., 2009; Bartels et al., 2016). Forest
disturbance and recovery play a major role in global C budgets
(Houghton, 2005). In this context, our results of showing the potential
of forest succession dynamics for improving remotely sensed AGB es-
timates are therefore also relevant to other ecosystems (tropical and
temperate). Frolking et al. (2009) have likewise emphasized the im-
portance of combining field data with remote sensing for generating
information on disturbance histories and recovery patterns to

Table 2
Pearson correlations between each of MODIS, GLAS, ASAR and inventory-based AGB
estimates after accounting for spatial autocorrelation*.

MODIS GLAS ASAR

Inventory-based 0.54 0.50 0.26
MODIS 0.36 0.55
GLAS 0.37

* P<0.01.

Fig. 7. Six highest ranked variables from RF models used to explain differences observed between remotely sensed and inventory-based AGB estimates with relative frequencies of SIFORT
attributes (Table 1) and observed TSLF: MODIS (a); GLAS (b); and ASAR (c); density plots of observed vs predicted AGB differences between inventory-based and remotely sensed AGB
estimates: MODIS (d), GLAS (e), and ASAR data (f).
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accurately estimate biomass across forests world-wide. The current
condition of a forest stand is related to its disturbance and recovery
history (Pflugmacher et al., 2012). Time series analysis of satellite data
would provide detailed information on prior canopy recovery/vegeta-
tion trend conditions that were based on disturbance histories (Main-
Knorn et al., 2013; Ahmed et al., 2014; Madoui et al., 2015). Chu and
Guo (2014) have proposed merging different remote sensing data with
field data for generating high-quality and quantitative information on
post-fire canopy recovery patterns.

5. Conclusions

We undertook this study to determine how to improve the accuracy
of spatial AGB estimates based on different remote sensing data col-
lected over a large area of boreal forest. Our analysis indicated the
potential for enhancing the relationship between reflectance data and
AGB through the incorporation of disturbance histories and vegetation
recovery trends. Not surprisingly, adding information on the relative
proportion of canopy cover density that was linked to signal saturation

reduced the differences between inventory based and remotely sensed
biomass estimates. TSLF may represent a proxy for such information at
the 2-km2 scale and thus presents a strong potential to rectify the
problem of signal saturation.

Looking forward, the future of remote sensing of vegetation biomass
relies on LiDAR technology for studying trees in a three-dimensional
context. Airborne LiDAR is preferred to spaceborne LiDAR to estimate
AGB, but its use remains confined to relatively small study areas due to
prohibitive acquisition costs (Zolkos et al., 2013). Combining airborne
LiDAR metrics with spaceborne LiDAR measurements may overcome
this problem of cost (e.g. Margolis et al., 2015) and in conjunction with
information on disturbance history and surficial geological substrate
information may provide still more accurate AGB estimates.

Furthermore, we also have demonstrated the need to integrate
ground plots with remotely sensed data up to the scale at which dis-
turbances tend to occur. We also suggest that adequate measures of
uncertainty should be provided with remotely sensed biomass estimates
by using spatially exhaustive ground-plot data. We therefore propose
the inclusion of metrics that relate to both horizontal and vertical

Fig. 8. Box-and-whisker plots of observed differences between inventory-based AGB estimates and biomass estimates of MODIS (a), GLAS (b), and ASAR (c), regrouped by abundance
classes of closed-canopy cover densities.

Fig. 9. Six highest ranked variables from RF models used to explain differences observed between remotely sensed and inventory-based AGB estimates when abundances of cover canopy
density classes are removed from the list of potential explanatory variables: MODIS (a); GLAS (b); and ASAR (c). Density plots of observed vs predicted AGB differences between remotely
sensed and inventory-based AGB estimates: MODIS (d); GLAS (e); and ASAR data (f).

D.B. Irulappa Pillai Vijayakumar et al. Remote Sensing Applications: Society and Environment 8 (2017) 71–82

79



canopy structures (Lu et al., 2014) and factors relevant for forest dis-
turbance and recovery patterns (e.g. TSLF, surficial deposits) for AGB
estimation.
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