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RÉSUMÉ 

La présente étude visait à mieux comprendre la dynamique de la coexistence entre 
l' érable à sucre (Acer saccharum Marsh.) et le hêtre à grandes feuilles (Fagus 
grandifolia Ehrh.) dans un contexte de changements globaux et à évaluer des pratiques 
sylvicoles pouvant être adaptées à cet écosystème dans ce contexte en perpétuel 
changement. Dans le premier chapitre, nous nous sommes intéressés à l' effet de la 
fertilisation sur la croissance et la régénération de ces deux espèces dans un contexte 
où plusiems autems émettent l'hypothèse d ' une baisse de fertilité des sols- en raison 
des précipitations acides- qui défavoriserait l' érable aux par rapport au hêtre à grandes 
feuilles. Les données provenant d' une dispositif de fertilisation (chaulage) ne montrent 
que des effets négligeables de ce traitement sur la dynamique entre les deux essences, 
alors que des traitements de récolte et d' élimination des gaules de hêtre ont des effets 
beaucoup plus marqués. Nos résultats ne semblent pas démontrer que la richesse des 
sols est un facteur limitant la croissance et la régénération de l ' érable à sucre dans la 
région à l' étude. 

Dans le deuxième chapitre, nous nous sommes penchés sur l' évolution comparée de la 
croissance de l'érable à sucre et du hêtre sur une période d 'environ 60 ans par 
dendrochronologie. Nos résultats démontrent clairement une chute abrupte de la 
croissance de 1' érable par rapport au hêtre à partir de 1986. Sans pouvoir 1' affirmer 
avec certitude, nous émettons l' hypothèse que cette baisse de croissance serait due à 
un événement de redoux suivi d'un gel sévère en janvier 1986, puis suivi par une 
sécheresse en 1988. Non seulement l'érable à sucre n 'a pas recouvré sa croissance 20 
ans plus tard, mais il semble avoir été affecté de nouveau par un autre événement 
extrême. Comme les événements extrêmes sont appelés à être de plus en plus fréquents , 
mais qu ' ils peuvent avoir des effets en apparence subtils, nous prônons le 
développement d'approches de modélisation novatrices qui permettront de prendre en 
compte les effets de tels événements. 

Dans le troisième chapitre, nous nous sommes intéressés à l'aménagement équienne 
comme outil potentiel pour l' adaptation aux changements globaux puisque ce mode 
d' aménagement est presqu ' inutilisé dans les érablières du Québec. L' aménagement 
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équiem1e présente 1 'avantage de favoriser une grande diversité - tant à 1' échelle du 
peuplement que du paysage - qui est souvent vue comme un élément important de la 
résilience des forêts face aux changements globaux. Malgré l' absence de littérature sur 
le sujet, il existe une forte croyance à l' effet que l'aménagement inéquienne est 
préférable à l' aménagement équienne pour favoriser la résilience des forêts . Nous 
avons ainsi procédé à une revue de littérature recensant les articles scientifiques à 
travers le monde qui comparent les deux modes d' aménagement au niveau écologique. 
Il ressort de cette revue qu'aucune des deux approches ne semble supérieure à l'autre 
du point de vue écologique, chacune ayant ses avantages et inconvénients. Comme les 
réponses obervées sur les effets de 1 ' aménagement équierme et inéquienne sont très 
spécifiques aux espèces, cette revue supporte qu'une diversité d' approches sylvicoles 
sont nécessaires pour maintenir une diversité d' habitats. Par le fait même, notre étude 
ouvre la voie pour les aménagistes à l ' utilisation d' un outil sylvicole supplémentaire­
l' aménagement équienne, qui était quasiment proscrit dans certains types de forêts 
(ex. : les forêts de feuillus nobles)- pour faire face aux changements globaux. 

Pris dans leur ensemble, les résultats des chapitres de la thèse supportent 1 ' utilisation 
mesurée de 1 'aménagement équienne dans les érablières pour, entre autres, favoriser 
l'érable à sucre aux dépens du hêtre et la résilience de cet écosystème dans son 
ensemble. Enfin, nous jetons les bases d'une approche permettant de doser le niveau 
d' interventionnisme de l' humain dans sa volonté de faciliter l' adaptation des 
écosystèmes forestiers aux changements globaux. 



INTRODUCTION GÉNÉRALE 

La coexistence des espèces intrigue les écologistes depuis des décennies (ex. 

(Whittaker, 1965); elle a été étudié dans plusieurs milieux (ex. Christie and Armesto, 

2003; Lusk and Smith, 1998; Wright, 2002; Yamamoto et al., 1995), et pour 

plusieurs taxa (ex. Martin, 1988; Novotny et al., 2002; Pfennig et al., 2006). Aussi, 

la coexistence des espèces est un çhamp de recherche en lui-même. Par exemple, 

Zobel (1992) identifie sept concepts (complémentaires ou exclusifs) permettant 

d 'expliquer la coexistence d'espèces. Dans les dernières années, la théorie du modèle 

neutre (Hubbell, 1997) est certes celle qui a attiré le plus d' attention (Grave! et al., 

2006). Cette théorie est à 1 'opposé de celle des niches et considère les espèces comme 

équivalentes au niveau fonctionnel et elle prend en compte les dynamiques aux 

échelles de la population locale et. de la métacommunauté. Toutefois pour qu'une 

coexistence s'installe, une stabilité est requise dans les forces qui structurent les 

commw1autés (Clark et al 2007). Or, cette stabilité, spécialement avec les 

changements globaux, est fortement remise en question. 

Depuis plusieurs décennies, les scientifiques tentent d'expliquer la coexistence de 

l' érable à sucre et du hêtre à grandes feuilles (CEEH) dans les forêts tempérées du 

nord-est américain. On parle de coexistence plus que de succession (e.g. Forcier, 

1975) parce que les deux essences sont très tolérantes à l'ombre et qu'aucune ne 

semble dominer au point de marginaliser l' autre tant à l'échelle du peuplement que 

du paysage, et ce sur une longue période (plusieurs siècles). C' est la définition que 

nous retiendrons pour cette thèse. Poulson et Platt (1996) ont proposé un modèle de 

coexistence allogénique, dépendant de la grandeur et de la fréquence des trouées. Ce 
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modè le se situe dans le même courant que celui des études de Runkle (1981) et 

Canham (1988, 1989) qui ont aussi étudié le succès de la régénération de ces deux 

essences en fonction de diverses caractéristiques des trouées. Bien que les résultats 

de ces études ne soient pas toujours concordants, ils tendent généralement à 

démontrer que le hêtre a une meilleure capacité à survivre sous couvert et que l'érable 

à sucre a une meilleure capacité à augmenter sa croissance en hauteur en présence 

d ' une trouée. Par contre, Beaudet et al. (2007) n 'observent pas de changements 

marqués de la performance de la régénération des deux essences selon un gradient de 

lumière après une importante ouverture créée par un verglas . Ce résultat est en 

contradiction avec celui de Canharri (1989) qui a observé une meilleure réponse de la 

part de l'érable à des petites trouées que de la part du hêtre. Nolet et al. (2008) 

observent un plus grand succès pour l'érable à sucre après coupe totale qu ' après 

coupe partielle et émettent l ' hypothèse qu 'il existe un seuil de lumière à partir duquel 

l'érable à sucre est plus performant que le hêtre à grandes feuilles . Ce seuil serait 

toutefois beaucoup plus élevé que celui proposé par Poulson et Platt (1996) . (Grave! 

et al., 2011) observent un changement sur 40 ans dans le succès relatif de 

l'établissement des deux essences, passant d' un avantage pour l'érable à un avantage 

pour le hêtre à grandes feuilles sans toutefois pouvoir en expliquer les causes. Arii et 

Lechowicz (2002) ont quant à eux démontré que les conditions de sol avaient aussi 

un effet important sur le succès de régénération des deux essences, le hêtre évitant 

les sites les plus secs et l 'érable évitant les sites plus pauvres (pH acide et teneur en 

calcium plus faibles) sous la canopée de hêtre. Ce dernier résultat, l'effet de la 

canopée du hêtre sur les caractéristiques des sols, va dans le sens d ' une coexistence 

autogénique et est donc en contradiction avec le modèle de Poulson et Platt. D 'autres 

auteurs ont aussi vu des relations entre les caractéristiques de sol et le succès relatif 

des deux essences en régénération (Duchesne et al., 2005; Nolet et al., 2008) alors que 

d'autres n'en ont pas observées (Grave! et al., 2011). 



Parallèlement aux études sur la CEEH, de très nombreuses études se sont penchées 

sur le dépérissement de la cime ou le déclin de la croissance de l' érable à sucre 

observé à différentes périodes dans le nord-est américain et au Canada depuis 

quelques décennies (Millers et al. , 1989). Il n'est pas toujours facile de dissocier les 

phénomènes de dépérissement et déclin puisqu ' ils sont intimement liés (Houston, 

1999). La quantification de ces phénomènes prend différentes formes. Par exemple, 

sur le plateau des Appalaches, les érables morts peuvent représenter de 25 à 30% de 

la surface tenière en érable sur les certains sites les plus susceptibles (Hallett et al., 

2006). Bauce and Allen (1991) observent une diminution de croissance en surface 

terrière de l' érable dans l'état de New York de l 'ordre d' environ 40% entre 1962 et 

1987. Duchesne et al. (2002) ont aussi observé de telles chutes de croissance dans 

certains sites du Réseau d'étude et de surveillance des écosystèmes forestiers 

(RESEF) du Québec. Kolb et McCormick (1993) montrent une baisse de croissance 

en surface terrière d' environ 75% sur 20 ans dans des érablières de la Pennsylvanie. 

Ce ne sont pas toutes les régions qui sont touchées par le déclin/dépérissement; par 

exemple, Lane et Reed (1993) n' observent aucun signe de déclin à long terme pour 

l' érable dans le nord des États-Unis. Dans l' ouest du Québec, des données récentes 

semblent indiquer que la croissance en diamètre de l' érable à sucre est toujours en 

déclin (Labrecque et al., 2006). 

Ce déclin/dépérissement a été associé à de nombreux facteurs, tels la défoliation par 

l~s insectes (Cooke and Lorenzetti, 2006), les maladies (Houston, 1999), les facteurs 

climatiques (Auclair et al., 1996; Payette et al., 1996), les dépôts acides (Adams, 

1999), la densité des peuplements (Bauce and Allen, 1991), l' âge des peuplements 

(Auclair et al. , 1996) et la colonisation par l'érable de sites qui lui sont peu propices 

(Horsley et al., 2000). Il demeure que les chercheurs semblent s'accorder sur le fait 

qu ' il n' y a pas qu ' une seule cause liée au déclin de l' érable à sucre. Toutefois, c 'est 

sur 1' importance relative de ces facteurs ou leur caractère (facteur prédisposant, 
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initiateur, aggravant (Manion, 1981) que les opinions divergent. Les facteurs liés aux 

peuplements (densité, âge et qualité de site) sont considérés comme des facteurs 

prédisposant en ce sens qu'ils ne sont pas à l' origine du dépérissement, mais le 

favorisent. Les défoliations par les insectes (Gavin et al., 2008) ont des effets 

marqués sur la croissance de l' érable, mais je n ' ai trouvé aucune étude qui présentait 

cette cause comme étant la principale cause du déclin/dépérissement de l' érable à 

sucre. Les défoliations par les insectes semblent souvent agir en concomitance avec 

des événements climatiques extrêmes. Pour plusieurs auteurs, les événements 

climatiques extrêmes seraient la cause principale des déclins observés (Auclair et al., 

1997; Bauce and Allen, 1991; Gavin et al., 2008); les sécheresses et les événements 

de gel-dégel sont les phénomènes les plus souvent cités. Enfin pour plusieurs autres 

chercheurs, les dépôts acides, en diminuant la quantité d'éléments nutritifs 

disponibles dans le sol pour la végétation, seraient la principale cause de 

dépérissement des érablières (Adams, 1999; Moore et al., 2012; Sharpe et al., 2002). 

Le débat sur 1' importance des dépôts acides sur la santé et la dynamique des 

érablières a d ' ailleurs donné lieu à des échanges virulents dans la littérature 

scientifique (Messier et al., 2011; Sharpe et al., 2002). 

En général, les corpus de littérature sur la CEEH et le dépérissement des érablières 

sont très indépendants, peu d ' auteurs faisant le lien entre les deux sujets (voir 

toutefois Duchesne et al., 2005 et ~olet et al., 2008). Cela s' explique probablement 

par le fait que les études traitant de la CEEH ont en commun qu 'elles ne regardent 

que le succès relatif de la régénération (semis et gaules) d ' une essence par rapport à 

l' autre. Bien qu ' il soit extrêmement pertinent de s' intéresser à la régénération pour 

connaître comment évolue la dominance entre les deux essences, il est surprenant 

que peu d 'études (voir Runkle, 2013) se soient penchées sur la performance relative 

des deux essences à des stades J?lus avancés (DHP de 10 cm et plus). Cette 

performance à des stades plus avancés, certes influencée par le dépérissement, est 
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susceptible d'influencer la composition en essences dans la canopée, qui, à son tour, 

peut avoir une influence sur le succès de régénération des deux essences. 

Afin de mieux comprendre l' évolution de la CEEH dans un contexte de changements 

globaux, la présente étude vise à préciser l'effet des variables climatiques et du statut 

nutritionnel, appelés à évoluer avec les changements climatiques et les dépôts acides 

(deux des éléments les plus importants des changements globaux), sur la CEEH, et 

ce, à différents stades de développement des individus, pas seulement au stade de la 

régénération. La prise en compte de différentes classes de taille des individus dans 

l'étude de la CEEH apparaît importante pour deux raisons distinctes. Premièrement, 

les individus dominants de la canopée ne sont pas soumis aux mêmes conditions de 

croissance que les individus sous la canopée que ce soit en termes de radiation, de 

température, de pression atmosphérique ou de vitesse de vent (ex. Baldocchi et al., 

2002). N ' étant pas soumis aux mêmes conditions, les individus de différentes tailles 

ne réagiront pas nécessairement de la même façon à des changements de conditions 

(ex. : disponibilité en eau - Mérian and Lebourgeois, 2011 - ou en éléments 

nutritifs) . Deuxièmement, le stade de développement ontogénique peut avoir un 

effet marqué sur l' allocation des ressources (Delagrange et al., 2004). Il est donc 

logique de croire que des individus de tailles différentes ne sont pas nécessairement 

influencés de la même façon par des changements de conditions de croissance. Par 

exemple, des jeunes tiges en plein développement pourraient avoir des besoins en 

éléments nutritifs du sol plus grands que des arbres dominants qui, en grande partie, 

recyclent les éléments nutritifs (Vadeboncoeur, 2010). Autre exemple, des plus 

petits individus ayant des systèmes racinaires moins bien développés pourraient 

avoir plus de difficultés à tolérer un déficit en eau . 

Par ailleurs, les changements globaux ne sont pas les seuls facteurs à influencer la 

CEEH puisque d' autres facteurs, tels les épidémies d' insectes (Cooke and 
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Lorenzetti, 2006), le broutage par les chevreuils (Sage et al., 2003), et 

l' aménagement forestier (Nolet et al., 2008), peuvent aussi influencer cette 

coexistence, et ce, de façon indépendante ou non des changements globaux. 

L'aménagement forestier, et plus spécifiquement la sylviculture, peut toutefois 

constituer une opportunité pour rendre les forêts plus résilientes face aux changements 

globaux. Toutefois dans la très grande majorité des juridictions qui couvrent l 'aire de 

distribution de 1 'érable à sucre et du hêtre à grandes feuilles, la sylviculture est peu 

diversifiée puisque l' aménagement inéquienne (coupe de jardinage) y est fortement 

recommandé, sinon obligatoire, ne laissant que très peu de place à l' aménagement 

équienne. Pourtant, l'an1énagement équienne, spécialement s'il est bien agencé avec 

d'autres formes d 'aménagement, semble présenter certains avantages en termes de 

résilience des peuplements forestiers, car il favorise souvent une diversité en essences 

forestières et permet de ré-initialiser un peuplement forestier à partir de jeunes tiges 

vigoureuses. Dan un contexte de changements globaux, une diversification de la 

sylviculture favoriserait probablement la résilience des écosystèmes présentement 

dominés par ces deux essences. Or, l' aménagement équienne se bute à des préjugés 

quant à ses impacts écologiques- peut-être parce qu'utilisé de façon trop dominante 

dans cet1aines régions. Si ces préjugés sont fondés ou demeurent des préjugés, il sera 

difficile d'entrevoir l' aménagement équienne comme une option valable pour 

favoriser la résilience des forêts 

Ainsi, dans le Chapitre 1, j 'étudierai la comment la CEEH est influencée par des 

changements dans le statut nutritionnel du sol en relation avec la taille des individus. 

Dans le Chapitre 2 de ma thèse, je me pencherai sur les effets du climat sur la CEEH 

en fonction de la taille des individus étudiés (contrairement à Gravel et al. (20 11) 

par exemple qui s' étaient concentrés sur les gaules). Finalement, dans le Chapitre 3, 

j 'évaluerai, à partir d' une revue de littérature, comment l' aménagement équienne et 

inéquienne se comparent quant à letirs impacts écologiques dans les forêts du monde 
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entier. 

Mes hypothèses générales sont dont les suivantes: 

• Comme de nombreuses études tendent à démontrer un effet positif 

important de la fertilité des sols sur 1' érable à sucre, la fertilisation devrait 

favoriser la croissance et la régénération de l'érable à sucre aux dépens du 

hêtre à grandes feuilles. 

• Comme de nombreuses études ont relaté une baisse de croissance de 1' érable 

à sucre, et ce un peu partout sur son aire de distribution, un moment 

charnière relié au début de cette baisse devrait être observé; 

• Comme 1 'aménagement équienne est perçu de façon négative au Québec (en 

forêt feuillue noble plus particulièrement) et dans plusieurs autres 

juridictions, une revue de littérature exhaustive comparant les effets 

écologiques de l'aménagement équienne et inéquienne devrait démontrer 

des effets écologiques beaucoup plus négatifs pour l'aménagement 

équienne. 
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CHAPITRE I 

LIMING HAS A LIMITED EFFECT ON SUGAR MAPLE-AMERICAN BEECH 

DYNAMICS COMPARED TO BEECH SAPLING ELIMINATION AND CANOPY 

OPENING.1 

1 Ce chap itre a été accepté, tel que présenté, dans la Revue canadienne de la Recherche forestière . Les 
co-auteurs sont : Sylvain Delagrange, Kim Bannon, Christian Messier et Daniel Kneeshaw. 



1.1 Abstract 

Sugar maple (SM, Acer saccharum Marsh.)-dominated forests of North America are 

increasingly affected by many human-induced modifications in environmental 

conditions. As a remedy, adapted silvicultural treatments are needed. Even though it 

is generally accepted that SM health is related to soil fertility and that there is an 

extensive literature on SM-American beech (AB, Pagus grandifolia Ehrh.) 

regeneration stand dynamics related to light availability, the interaction between these 

two factors bas rarely been studied. Our main objective was thus to verify the possible 

role of a light-soil interaction on SM-AB stand dynamics. We used a factorial design 

with three factors (harvest intensity, liming and beech sapling elimination) to test this 

interaction. Our results showed that the radial growth of SM and AB tree and sap ling 

growth was positively affected by canopy opening but not by liming. Liming did not 

favour AB seedlings while it favoured SM in specifie canopy opening situations 

confirming, albeit partially, the light-soil interaction hypothesis. Overall, liming bad 

very limited effects on SM-AB stand dynamics compared to canopy opening and AB 

sapling elimination treatments. We do not advocate the extensive use of liming as 

other silvicultural strategies tested provided more promising results to favour SM 

over AB. 
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1.2 Introduction 

For decades, forest ecologists have attempted to understand the mechanisms that 

drive changes in forest composition in order to predict future conditions. This 

understanding is crucial in an era of global change, given that silvicultural treatments 

can either help forests to adapt to novel ecological conditions (e.g. West et al., 2009) 

or decrease forest resilience when improper actions are taken. The forests of 

northeastern North America that are dominated by sugar maple (SM, Acer 

saccharum Marsh.) represent an example of an ecosystem that requires both deeper 

understanding and adapted silviculture, as evidence shows that this ecosystem bas 

already been affected by changes in environmental conditions (e.g. Auclair et al. , 

1996; Driscoll et al. , 2003). Despite many studies that have been carried out on the 

dynamics of sugar maple-dominated ecosystems in the last few decades, limited 

links have been made between two major research perspectives: the first one, driven 

main! y by abiotic factors ( e.g. soi! fertility ), focuses on sugar maple decline and the 

second one driven, main! y by biotic factors, focuses on sugar maple-American beech 

(AB, Fagus grandifolia Ehrh.) coexistence. 

SM decline has been reported in many studies over recent decades. This decline, 

which is closely linked to SM dieback (Houston, 1999), has affected SM stands in 

many parts of its distribution. For example, Hallett et al. (2006) reported that dead 

SM represent about 25% to 30% of SM basal area on the Allegheny Plateau of the 

northeastern USA. Moreover, mahy studies have reported decreases in basal areal 

increment in recent decades: a decrease of approximately 30% in the state of New 

York (Bauce and Allen, 1991) and in the province of Québec (Duchesne et al., 2002), 

and as great as 75 % in Pennsylvania (Kolb and McCormick, 1993). 
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While it is generally accepted that SM decline is due to many concomitant factors -

insect defoliation (Cooke and Lorenzetti, 2006), diseases (Houston 1999), climatic 

events (Auclair et al., 1996; Payette et al., 1996), soil fertility depletion is the factor 

that has received the most attention. Many studies (Duchesne et al., 2002; Hallett et 

al. , 2006; Kolb and McCormick, 1993) have shown a relationship between sugar 

maple decline and current soil nutrient status (mainly with Mg and Ca). However, 

these studies could not determine a causal relationship because they did not directly 

link SM decline to any change in soil nutrient status. To overcome this problem, 

many studies have tested whether fertilization would increase SM performance. In 

a meta-analysis, Vadeboncoeur (2010) showed that fertilization with Ca (alone or in 

combinations with other elements) generally has a positive effect on SM 

performance. However, results were highly variable as sorne authors observed 

marked positive effects (Long et al., 2011; Moore and Ouimet, 2006; Wilmot et al., 

1996), others observed no effects (Fyles et al., 1994; Gasser et al., 2010), and still 

others noted negative effects (Côté et al. , 1995). In another recent meta-analysis, 

Reid and Watmough (2014) also observed strong variation in the effects of liming 

and ash fertilization on hardwood growth. 

On the biotic side, many studies published since the early 1980's focused on SM­

AB coexistence. While sorne divergent results have been reported, a consensus 

seems to emerge- especially among studies focussing on the regeneration dynamics 

between the two species, that a slight increase in the frequency and size of gaps 

favours SM over AB. For example, Runkle (1981) showed that the SM-AB 

dynamics differed among sites given that species self-replacement occurred on sorne 

sites while reciprocal replacement of SM by AB regeneration occurred on others. 

Canham (1988) observed a stronger growth response of SM than AB to small canopy 

gaps, which he attributed to a greater increase in leaf area and better leaf display for 
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sugar maple in gaps compared to those beneath closed canopies. He subsequently 

showed that beech saplings are better able to withstand canopy competition 

(Canham, 1990). Brisson et al. (1994) predicted that in an old-growth SM dominated 

stand, AB abundance would strongly increase if the high proportion of AB that was 

observed in the sapling layer persists. The authors further suggested that light was a 

possible limiting factor for SM seedling survival. Poulson and Platt (1996) observed 

that an increase in the number of gap openings and available vertical light in the 

recent decades shifted SM-AB dynamics, leading to an advantage of SM over AB. 

In subsequent decades, a number of studies arrived at different conclusions. Beaudet 

et al. (2007), who worked on the .same site as Brisson et al. (1994), noticed no 

significant changes in the relative performance of SM and AB seedlings after large 

openings were created by a severe ice storm. Nolet et al. (2008) showed openings 

that were much larger than those described by Poulson and Platt (1996) or Canham 

(1988) were required to favour SM over AB in the sapling stage. Nelson and Wagner 

(2014) observed that shelterwood harvests are not sufficient to favour SM over AB 

at the seedling stage unless a silvicultural treatment is applied to eliminate the AB 

sapling layer. To understand how SM can be promoted at the expense of AB is 

actually an important issue because SM has a much greater economie value. 

Studying the combined effect of stand disturbance history and soi! nutrient status on 

current SM and AB regeneration, Nolet et al. (2008) put forward a hypothesis that 

would help to reconcile differences in findings from studies that were related to SM­

AB dynamics with those that were related to the effect of soil fertility on SM decline. 

Their hypothesis considers a light-soil interaction and is two-fold. First, as light 

increases, SM performance relative to that of AB improves and, beyond a certain 

threshold, SM even exceeds AB growth. While other authors had found similar 
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results, Nolet et al. (2008) add that this threshold is much higher than previously found 

and that large openings are required for SM to outperform AB. The second part of the 

light-soil interaction hypothesis predicts that the light threshold is higher on less fertile 

sites, meaning that on poorer soils, SM will require more light to outperform AB. This 

second part is in agreement with many findings showing SM to be more sensitive to 

changes in soil fertility than AB (Kobe et al., 2002; Long et al., 1997). This hypothesis 

is supported physiologivally as nutrients (e.g calcium) are involved in several leaf 

mechanisms including stomata opening and synthesis of membanes and cell walls 

(McLaughlin and Wimmer, 1999). ·Furthermore, Nolet et al. (2008) were not explicit 

about how their hypothesis might apply to various stages of stem development. 

However, the consideration of stem size in the study of SM-AB dynamics appears to 

be important for two distinct reasons. First, dominant individuals in the canopy are 

not subject to the same growth conditions as individuals under the canopy (poles, 

saplings and seedlings) in terms of radiation, temperature, air pressure or wind speed 

(e .g., Baldocchi et al. 2002). Second, the stage of development of the individual (or 

size) can have a marked effect on resource allocation (Delagrange et al., 2004). It is 

therefore logical to assume that individuals of different sizes are not necessarily 

influenced in the same way by changes in growth conditions (Mérian and 

Lebourgeois, 2011). A better understanding of how the response of the various stages 

of stem development to canopy opening and fertilization differ is crucial to develop 

sound silvicultural treatments. 

Using an experimental design that was established in 2006, our objectives were i) to 

test the light-soil interaction hypothesis advanced by Nolet et al. (2008) and ii) to 

propose adapted silvicultural treatments to favour SM at the expense of AB. 

1.3 Methods 
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1.3.1 Study area 

The study area is located northeast of Duhamel (Quebec, Canada) close to Gagnon 

Lake (46°07'40" N, 75°09'24" W.), which is in the eastern portion of the Simon Lake 

landscape unit in the western sugar maple-yellow birch (Betula alleghaniensis Britton) 

bioclimatic region (Saucier et al., 2009).The landscape contains numerous hills with 

elevations rarely exceeding 350 rn asl (Robitaille and Saucier, 1998). Mean annual 

temperature is 3.7 °C, the mean annual precipitation is about 1000 mm (including 250 

mm as snow), and the number of degree-da ys above 0 °C is 2716 (Environment Canada, 

2014). Surface geology of the study area is characterized by thin to moderately thin 

glacial till, which is composed of metamorphic rocks, such as gneiss. The parent 

material is topped by sandy Dystric Brunisols (Soil Landscapes of Canada Working 

Group (SLCWG), 2010). The forest canopy is dominated by sugar maple in association 

with yellow birch, American beech, American basswood (Tilia americana L.), 

ironwood or American hop-hornbeam (Ostrya virginiana (Miller) K. Koch), eastern 

hemlock (Tsuga canadensis (L.) Carrière), and balsam fir (Abies balsamea (L.) Miller). 

The region is recognized for its relatively low pH and Ca levels (Bannon et al., 2015) 

and Nolet et al. (2008) showed that higher Ca levels were associated with higher SM 

performance over AB in this region. 

1.3.2 Experimental design 

We used a complete factorial design with three crossed factors: harvest intensity (to 

affect light), timing (to increase soil fertility), and an AB cleaning treatment (to control 

competition). Three levels of harvest intensity (control, selection eut, and clear-cut), 

two levels of liming (no treatment, liming), and two levels of cleaning treatment (no 

treatment, beech sapling elimination) were tested. Each treatment combination was 

replicated 4 times, leading to 48 treatment units, which were randomly assigned to a 

location and were at least 100 rn apart (Figure Al, supplementary material). The study 



15 

site covered an area of 320 ha though most of the treatment units were concentrated in 

a 120-ha section. We localized the central point within each treatment unit using a steel 

pin and used it as the centre of the first plot (of five) in the treatment unit (Figure 1.1). 

The four other plot centres were located 10 rn from the first plot centre and oriented in 

the four cardinal directions. We used these five plots mainly to describe the tree and 

sapling strata (see Field measurement section). Moreover, two 4 m2 subplots were 

located 2 rn north and south of each plot centre to describe the seedling layer (see Field 

measurement section). 

Prism sweep centre point 
(factor 2) for basal a rea (n=S) 

Sapling plot 
(r =3.09 m, n= 5) 

Seedling subplot 
(r =1.13 m, n =10) 

Beech saplingtreatment 
(r= 6 ma round each centre point) 

Li ming treatment (r = 10 ma round 
each centre point leanding to a 
r min= 14.14 m from first centre point) 

Figure 1.1 Sampling and treatment design used in each treatment unit. 

1.3.3 Treatments 

Canopy harvesting treatments were implemented in the autumn 2006. Most of the study 

area was treated using selection cutting (30 % basal area removal distributed over ali 

diameter classes) according to Québec standards for provincial lands (Majcen et al., 

1990). Clear-cuts and controls were implemented within this matrix of selection cuts. 
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Clear-cuts were performed without special care for advance regeneration and varied in 

size from 0.6 ha (80 rn * 80 rn) to 1 ha (100 rn *100 rn). Controls (no canopy harvesting) 

were 1 ha in area. After harvesting, 1 clear-cut treatment unit was destroyed by raad 

construction, 1 selection eut could not be precisely located, and another selection eut 

did not end up being harvested and, thus, was considered as another control. These 

changes left us with 15 clear-cuts, 14 selection cuts and 17 controls (Table 1.1). In May 

2007 at the beginning of leaf out, half of the treatment units (i.e., 23) were fertilized 

with the equivalent of 3 t ha-1 of dolomitic lime (29% in calcium and 6% in 

magnesium), leading to a fertilization of 870 kg ha-1 in calcium and 180 kg ha-1 in 

magnesium). As a comparison, Moore and Ouimet (2006) observed positive effect with 

the addition 1 t ha-1 of dolomitic lime. The treatment was equally applied, within a 10 

rn-radius of each of the five centres in each treatment unit (Figure 1.1), using a modified 

leaf blower (Stihl BG85, Figure A.2, supplementary material). For half of the treatment 

units (almost equally distributed according to the canopy harvesting and liming 

treatments), we eliminated beech saplings within a 6 rn-radius of each plot centres 

(Figure 1.1), using manual cutters for smaller saplings (1-5 cm DBH, diameter at 1.3 

rn above ground level) and motor-manual brushsaws for bigger saplings (5 to 9 cm in 

DBH) in June 2007. 

1.3.4 Field measurements 

Data collection was performed from autumn 2006 (pre-harvest) to late summer 2013, 

as detailed in Table 1.2. For each treatment unit, a factor 2 (metric) prism sweep was 

performed at each of the five plot centres in which species of ali trees ~ 9.1 cm in DBH 

was recorded. ln autumn 2011, ail sugar maple and beech trees within a 13 rn radius 

around the first plots of each treatment unit (partial cuts and controls) were cored with 

an increment borer at DBH. This radius was selected to ensure that the sampled trees 

had potentially been affected by liming (Figure 1.1). The number of SM and AB 
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saplings was recorded by DBH classes (1.1-3 cm; 3.-5 cm; 5.1-7 cm; 7.1-9 cm) at each 

plot centre, within a 3.09 rn radius (30 m2). In 2013, one sapling of both species and 

each DBH class (when present) in partial cuts and controls was eut at DBH and a disk 

was brought back to the laboratory. for further radial growth analysis. Sugar maple, 

beech and other species (mainly yellow birch, ironwood and trembling aspen (Populus 

tremuloides Michx.)) seedlings ( < 1.1 cm at DBH) were counted within each 4 m2 

circular subplot centre (1.13 rn radius) 4 times during the 8-year period of investigation. 

Further, the height of the tallest seedling for each species in each plot was recorded in 

August 2013 . 
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Table 1.2 Chronology of treatments and data collected during the present 

study. 

Tree harvesting 

Li ming 

Regeneration 

treatment 

Seedling cou nt 

Seedling height 

Sapling count 

Sapling disks 

Tree composition 

Tree boring 

Light measurement 

Soil sampling 

Au2006 1 Sp2007 1 Au2007 1 Su2011 1 Au2011 1 Su2013 1 

x 

x 

x· 

x x x x 

x 

x x x x 

x 

x 

x 

x 

x. x 

1 Au: Autumn; Sp: Spring; Su: late-Summer 

To quantify the light environment created by each canopy opening and beech 

regeneration treatment, we took hemispherical photographs (at 0.5 rn in height) at the 

centre of each treatment unit at the end of summer 2009. For each treatment unit, 5 soil 
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sam pies (one at each plot centre) were taken from the B-horizon in spring 2007 prior 

to liming and in summer 2013, and later composited to estima te average soi! conditions. 

1.3.5 Laboratory analyses 

The ring-widths of 12 years (1998-2009) for the tree cores, and 15 years (1998-2013) 

for the sapling disks were measured to the nearest 0.01 mm using a 40X magnification 

scope and a sliding measurement stage (Velmex Inc., Bloomfield, NY, USA), which 

was coupled to a digital meter. For light measurements, each hemispheric photograph 

was converted to black and white format and analyzed with GLA (Gap Light Analyzer; 

Fraser 1999). Finally, soils samples were air dried for severa! weeks and sieved to pass 

a 2 mm-mesh screen prior to analysis . Bulk pH of 2:1 (soil:deionized water) slurries 

was measured with a glass electrode-calomel probe (pHM82, Standard pH Meter; 

Radiometer Copenhagen, Bmnsh0j , Denmark). Exchangeable soil cations were 

extracted with unbuffered 0.1 mol*L- 1 BaCh solution (Hendershot et al. 1993). Cation 

(Ca, Mg) concentrations were determined by atomic absorption spectrometry 

(PerkinElmer lnc., Wellesley, MA). 

1.3.6 Data analyses 

AJI of our statistical analyses followed the mode! comparison approach that was based 

on the Kullback-Leibler information quantity, as presented by Anderson et al. (2000): 

this approach is different from the classical nul! hypothesis testing approach as the goal 

is to identify the best mode! of a set of models rather than to test an alternative 

hypothesis vs a nul! hypothesis. For each response variable (indicator), we compared 

the performance of a full mode! to simpler models using the three factors (harvest 

intensity, liming and cleaning treatment) of our experimental design as predictor 
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variables. This approach allowed us to test various plausible hypotheses regarding the 

effect of our predictor variables on the response variables in two ways. First, by 

comparing the corrected Akaike information criterion (AICc) obtained by each mode!, 

it is possible to calcula te the weight ( m) of a specifie mode!, which can be interpreted 

as the probability that this mode! is the best among ail tested models . Second, since a 

predictor variable may appear in more than one mode!, it is also possible to sum up the 

weight of the models in which a predictor variable appears. This cumulative weight 

can be interpreted as the probability that a specifie predictor variable be part of the best 

tested mode! (in contrast with p values used in null mode! testing) . Ali analyses were 

performed in R (version 3.1.0; R Development Core Team 2013) and were run 

separately for SM and AB because the degrees-of-freedom for testing a four-way 

interaction (with species as a factor) were too few . 

For adult trees, we verified the effect of treatments on mean radial growth between the 

post-harvest period (2007-2011) and the pre-harvest period (2002-2006) using a 

mixed-effects mode!, with treatment unit as the random variable (lmer function of 

package lme4 in R). For saplings, the response to treatments was evaluated based on 

the difference in basal area between 2007 and 2013, summed by treatment unit, using 

the lm function in R. We did not use 2006 data for saplings because we were more 

interested in testing the treatment effects on post-harvest dynamics than in evaluating 

direct harvesting effects. For the same reason, we used autumn 2007 data for AB (after 

destructive AB treatment), while we were able to use spring 2007 data for SM as they 

were not destroyed during AB treatment. For saplings, we also verified the response in 

mean sapling radial growth between the post-harvest period (2008-2013) and the pre­

harvest period (2002-2006) using a mixed mode! in the same manner as we did for tree 

growth. For seedlings, we first verified the treatment effects that were based on the 

difference in the density (stems*ha-1
) of seedlings between 2013 and 2006 summed by 
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treatment unit with the glm.nb function (MASS package in R). Second, we averaged the 

height of the tallest individual by species for each subplot and evaluated the effect of 

treatments using a mixed madel in the same manner as we did for tree growth. Finally, 

we compared the capacity of the 3 treatments to predict the species (response variable) 

that had the tallest seedling in subplots (in 2013) with a multinomiallogistic regression 

using treatment unit as a random variable; this analysis was performed with the 

polytomous package in R. 

1.4 Results 

1.4.1 Direct effects of treatments on light environment and sail chemistry 

Clear-cutting greatly increased light availability compared to contrais and, to a lesser 

extent, to partial cuts (Figure 1.2). Beech sapling elimination also increased light 

availability, but not as much as clear-cutting. Madel comparisons showed that the 

additive madel including canopy opening alone or in combination with the beech 

elimination treatment bad respectively 73 % and 27% probability of being the best 

madel to explain light availability when compared to the intercept madel (Table A.1). 

Seven (7) years after treatment, limed treatment units had higher Ca and Mg 

concentrations and slightly higher pH, while there were no marked differences in sail 

chemistry before treatment (Figure 1.3). For Ca and Mg, the madel using liming alone 

had more than a 99% probability of being better than the madel using the intercept 

alone while this probability dropped·to 75% for pH (Table A.1). Soil parameter values 

were generally higher, with or without liming, in 2006 than in 2013. We attribute this 

result to the season of sampling. In 2006, soil samples were taken in the early 

springbefore leaf emergence, while they were taken in late summer in 2013. 
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50 1 ~ 
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Figm·e 1.2 Light availability as a function of canopy opening and beech sapling 

elimination treatments. The limits of the box are the 25 and 75 percentiles, the 

separa ting line between the two shades of grey is the median, the lower and 

upper limits of the whiskers are the lOth and 90th percentiles, and points are 

beyond 1.5 x the interquantile range (25th_751h percentiles). 
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Figure 1.3 Effect of li ming on Ca and Mg concentrations and on pH. 

Details of the box plots are included in Figure 1.2. 

1.4.2 Mature tree radial growth 

Mature tree radial growth of bath species increased from pre-treatment (2001-2006) to 

post-treatment period (2007-2011). Bath species reacted positively to selection cutting 

with canopy opening (CO) respective! y having 97% and 75 % for SM and AB of being 

the best mode! that was tested (as indicated by w, Table 1.3). Since w is higher fo r SM 

than for AB, it means that the effect of the canopy opening treatment is statistically 

stronger fo r SM than fo r AB. However, since the intercept mode! is higher than 10 % 

(15%) for AB, it should not be complete! y rejected, meaning that there is sti ll a 

reasonably high probability that none of our treatments (canopy opening, liming and 

beech treatments) had an effect on AB tree radial growth (Figure 1.4, Table 1.3). While 

SM growth remained stable in contrais between the two periods, AB growth decreased. 

We attr ibu te this decrease in tree growth to the sudden introduction of beech bark 

disease (nectria fungal infection caused by feeding injury from the exotic beech scale 

insect Cryptococcus fagisuga, e.g. Houston, 1975) into the area. 
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Figure 1.4 Mature tree radial growth change between pre and post treatment 

periods for sugar maple (SM) and American beech (AB) according to the canopy 

opening and timing ti·eatments. Percentages related to L, B, CO represent their 

respective cumulative probabilities to be included in the best model (see 

Methodology and Table 1.3 for details). The percentage associated with the 

intercept is provided fot· comparison. Details of the box plots are included in 

Figure 1.2. 
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1.4.3 Sapling basal area and radial growth 

Basal area of sugar maple saplings (BAsM) decreased immediately following 

treatments because of the negative effects imposed by harvesting operations -for bath 

selection eut and clear-cut treatments -on sapling understory caver (Figure A.3). Post­

treatment (2007 to 2013), none of the treatment had a clear effect on SM and AB 

sapling basal area (Table 1.3, Figure A.3). As was the case with mature tree radial 

growth, sapling growth of bath species increased after treatments (Figure 1.5). Again, 

it appeared that only opening the canopy (selection eut) had a positive effect on radial 

growth ( ro = 92 % for SM and 93 % for AB) and that liming had no effect ( ro < 1%, 

Table 1.3), even though growth variation among saplings appeared lower with liming. 

Further, the effect of canopy opening lasted longer for AB than for SM, given that six 

years after treatment AB sapling growth was still greater than its pre-treatment levet, 

white SM sapling growth returned to its pre-treatment level (results not shawn). 
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Figure 1.5 Sapling radial growth change between pre- and post-treatment 

periods for sugat· maple (SM) and American beech (AB) according to the canopy 

opening and liming treatments. Percentages related to L, B, CO represent the 

cumulative probabilities that liming, sapling beech elimination, and canopy 

opening treatments would be respectively included in the best model that was 

tested for a species (see Methods and Table 1.3 for details). The percentage 

associated with the intercept is provided for comparison. Details of the box plots 

are included in Figure 1.2. 
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1.4.4 Seedling abundance and tallest height 

The interaction between the beech control treatrnent and the canopy opening treatment 

provided the best madel ( ro = 64 %, Table 1.3) for explaining the development of sugar 

maple seedling densities (DsM) from 2006 to 2013 (Figure 1.6). With a ro = 19 %, the 

beech control treatment alone cannat be discarded, but liming and the canopy opening 

treatments, both with ro < 4 %, cannat be considered as appropriate models. More 

precisely, a clear increase in DsM was observed when the AB control treatment was 

imposed, combined with no openings in the canopy. Otherwise, DsM was quite stable. 

The best madel for explaining AB density (DAs) development between 2006-2013 was 

clearly the one that included the canopy opening treatment alone (ro = 67 %). No other 

madel performed better than having a 10 % probability of being the best madel. 

Regardless of liming or beech control treatments, selection cuts led to an increase in 

DAB (Figure 1.6), while DAs did not change much for other canopy opening treatments. 

For the tallest seedling indicator, the interaction between canopy opening, liming and 

beech elimination treatments was the best mo del ( ro = 100 %, Table 1.3) for bath 

species. The canopy opening treat~ent, as shawn by corrected Akaike information 

criteria (AlCc) (in Table 1.3 and Figure 1.7), was the treatment that had the most 

important effect on dominant seedling height. In the contrais, AB was clearly the 

species with the dominant seedlings, even though dominant AB seedling height was 

lower when there was an AB sapling elimination treatment. In selection cuts, AB was 

sti ll the dominant species, even though dominant seedling height of SM was greater 

than that measured in the contrais. 
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l--
AB trea tment Llmlng and A B treatment 

Difference in seedling density before and after treatment 

according to the various treatments for sugar maple (SM) and American beech 

(AB). Au: Autumn; Su: late-summer. Percentages related to L, B, CO represent 

the cumulative probabilities that liming, sapling beech elimination, and canopy 

opening treatments would be respectively included in the best model that was 

tested for a species (see Methods and Table 1.3 for details). The percentage 

associated with the intercept is provided for comparison. Details of the box plots 

are included in Figure 1.2. 

In clear-cuts, the height of dominant SM seedlings is very similar to that of AB 

dominant seedlings. The effects of liming and beech control treatments appeared to be 
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more subtle. For SM, the liming treatment seemed to have a positive effect in clear­

cuts when there was no AB elimination treatment; it also had a positive effect on SM 

height when AB sapling elimination. was coupled with selection cutting. 
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Figure 1.7 Mean height of the tallest seedling in each subplot for the 

various treatments for sugar maple (SM) and American beech (AB). The fitted 

values refer to the predicted values at the plot level, after taking into account the 

random effect. Percentages related to L, B, CO represent the cumulative 

probabilities that liming, sapling beech elimination, and canopy opening 

treatments would be respectively included in the best model that was tested for a 

species (see Methods and Table 1.3 for details) . The percentage associated with 

the inte1·cept is provided for comparison. Details of the box plots are included in 

Figure 1.2. 
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Finally, seven years after treatrnent AB represented the dominant species in 60 % of 

the subplots within the controls and selection cuts (Figure 1.8); however, this 

percentage dropped to 25 % within clear-cuts in favour of SM (about 40 %) and other 

species (about 35 % ). The rnultiriornial logistic regression confirmed that the canopy 

opening treatment bad the most substantial effect arnong treatrnents since it predicts 

the most efficient! y ( ro = 95 %, Table 1.4) the species with the tallest seedling. 

Table 1.4 Model comparison for the multinomiallogistic regressions used to 

p1·edict the species with th~ dominant seedling at the subplot level. 

Model 
Weight 

k ~-AIXx 
(ro) 

L*B*CO 13 860.9 0.0% 

L*B 5 980.0 0.0% 

L*CO 7 917.0 0.2% 

B*CO 7 840.9 5.2% 

L 3 68.6 0.0% 

B 3 69.4 0.0% 

co 4 0.0 94.6% 

See Table 1.3 for abbreviations. 
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Species 

. os 

.SM 

. AB 

Percentage of each species having the dominant individual 

seedling in subplots according to the varions treatments. SM: sugar maple; AB: 

American beech OS: Other species. Percentages related to L, B, CO represent 

the cumulative probabilities that liming, sapling beech elimination, and canopy 

opening treatments would be respectively included in the best model that was 

tested for a species (see Methods and Table 1.4 for details). n = 85, 70 and 75 

respectively for controls, selection cuts and clear-cuts. 
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1.5 Discussion 

1.5.1 The light-soil interaction hypothesis 

Globally, our results agreed with the first part of the light-soil interaction hypothesis 

(Nolet et al. , 2008) which states that SM performance improves relative to that of AB 

as light availability increases. This was first observed in the situation where the removal 

of AB saplings greatly promoted SM seedling abundance. Second, SM was found to 

be more often the tallest seedling in clear-cuts compared to partial cuts and contrais. 

However, our results did not generally agree with the second part of the light-soil 

hypothesis which states that SM response to light availability should be more 

pronounced as sail fertility increases. We found almost no effect of liming on SM. 

lt is on control sites (no canopy harvesting) that the removal of AB saplings greatly 

promoted SM seedling abundance, without favouring AB seedling abundance. 1t 

should be noted that the elimination of AB saplings did not have this effect in selection 

cuts. Our field observations suggest that selection cuts favoured the development of the 

shrub layer (mainly stripped maple ~Acer pensylvanicum L.- and beech saplings), by 

imposing sudden and abundant light inputs (Figure 1.2), which in turn limited SM 

seedling recruitment. The negative effect of competing shrubs in the understory has 

been observed in many forested ecosystems although the competing species vary (Hill 

and Silander, 2001). Invasion by dense beech thickets has also been observed following 

the arrivai of the beech bark disease (Cale et al., 2012). In our study area, the understory 

is often invaded by beech even befor.e the beech bark disease occurs (Nolet et al 2008). 

In constrast in clear-cuts, the shrub layer is eliminated, which favours SM seedling 

growth and survival. 
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1t is also possible that our results at the seedling stage have been influenced by mast 

seed years . 1t seems that 2007 was a good seed year for SM as shawn by seedling counts 

(see supplementary material, Figure A.4). After 2007, SM seedling density consistent! y 

decreased un til 2013. Consequent! y,_ our results could be linked to the synchronisation 

of our treatments with the high 2007 SM seed production. AB seedling density also 

increased in the spring 2007 but we cannat attribute it directly to mass seed production 

since it is also possible that harvesting treatments triggered root sprouting. 

The regeneration success that we observed may also be lower in regions with high 

levels of deer browsing as browsing has been identified as a factor explaining SM 

regeneration (Sage et al., 2003). In our study area, our group as well as Roy and Doyon 

(2012) observed only very limited effect of deer grazing on SM regeneration. 

Our results with the tallest seedling indicator are also consistent with the light-soil 

interaction hypothesis. While AB represented the species with the tallest seedling in 60 

% of the subplots within the contrais and selection cuts, this percentage dropped to 25 

% in clear-cuts (except for the combined no-liming & no-AB treatment, Figure 1.8). 

The results at the seedling stage thus suggest that clear-cutting, which was most likely 

due to an increase in light availability (see supplementary material), decreases AB 

height dominance over SM in a manner that could not be achieved through selection 

cuts. 

The second part of light-soil hypothesis stated that SM response to light availability 

should be more pronounced as sail fertility increases. Our results are in agreement with 

this on ly for one indicator, the tallest seedling, and only in a few situations. First, in 

treatment units where selection cuts and AB sapling elimination were coupled, liming 

had a positive effect on the average height of the tallest SM seedling. This effect of 

liming was more obvious in clear-cuts, where liming alone led to SM seedling heights 
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as great as those observed in treatment units with the AB sapling elimination treatment. 

lt remains possible that we did not observe liming effects on dominant seedlings in 

contrais and selection cuts because. Jogging operations were not severe enough (or 

absent) to eliminate AB advance seedling regeneration. It may then be hard for SM, 

even with a possible boast from liming ( e.g., like the response that was observed for 

partial eut & AB treatment, Figure 1.7), to catch up with AB seedlings that were already 

much taller. 

Overall, our results indicate that the predictive power of the light-soil hypothesis is 

limited in our study system as there is only minimal evidence (i.e. the seedling stage 

only) to support the second component of the L-S hypothesis. Moreover, many results 

were unexpected, such as the effect of the AB sapling elimination treatment, which 

promoted SM seedling recruitment only in controls. As already mentioned, earlier 

studies focusing on gap dynamics showed that larger and more frequent openings 

favour SM at the expense of AB regeneration (Canham, 1988; Poulson and Platt, 1996). 

Hence, it is contradictory that larger openings - created by selection cuts in this study, 

by a severe ice-storm (Beaudet et al., 2007) or by shelterwood harvesting (Nelson and 

Wagner, 2014) - do not allow SM to outperform AB. We believe this contradiction 

could be explained by considering the regeneration status of stands in which the various 

measurements were made. When AB has already invaded the sapling layer, as was the 

case in many of our stands, it seems very unlikely that a significant number of SM 

seedlings (or rare SM saplings) would reach the canopy, since AB saplings (that already 

have a clear height advantage) rapidly benefit from any canopy opening. The invasion 

of the sapling layer by AB prior to the beech bark disease as observed in many regions 

in ea tern North America, however, is still poorly understood (Grave! et al., 2011). 
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1.5.2 Liming and silvicultural implications 

Liming has been proposed as a solution for improving sugar maple establishment 

and growth in maple stands of low soil fertility (Moore et al., 2012). Our results do 

not support such an idea even if our study was conducted on soils with poor Ca and 

Mg levels (Bannon et al., 2015). Indeed, timing with 3 tonnes per ha of dolomite lime 

had a very limited effect on sapling and tree growth and seedling establishment of 

sugar maple and American beech, even though its effects on soil chemistry were still 

evident 6 years after treatment (Figute 1.3). Such results are not surprising for beech 

since similar responses have been reported previously (Long et al. 2011). The lack of 

a clear significant effect for sugar maple is more surprising, since many studies have 

reported, for different stem development stages, a positive response to calcium 

fertilization (J uice et al., 2006; Long et al., 2011 ). 

We do not expect the weak response of sugar maple to timing that was observed in 

this study was due to the level of lime that was used, since this quantity lies within 

the maximum range where Vadeboncoeur (2010) had reported a positive effect in his 

meta-analysis. Instead, we propose that the repeated stresses that have been 

experienced by sugar maple trees in recent decades could explain this result (Long et 

al 2009). Obviously, more research is needed to understand the type and level of 

fertilization needed and on the generalizability of the results. Still, if we are unable to 

provide a clear explanation, in a research context, as to wh y the effects of timing were 

so weak, foresters are even less likely to identify stands that are suited for timing in 

an operational context. Thus, based on 1) the uncertainty of timing effects on SM 

performance, 2) the cost of purchasing and spreading lime, 3) the potential 

environmental impacts of its additions on soil and forest ecosystems (e.g., Auclerc et 

al. 2012), and especially, 4) the greater efficiency of other silvicultural treatments in 

promoting SM over AB, we do not advocate the extensive use of timing. 
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A possible silvicultural treatment to promote SM over AB, although drastic, is to 

combine a clear-cut with the elimination of the AB sapling layer. Such a treatment 

would not completely eliminate AB from stands, but would allow SM and other species 

to establish and develop on cutovers. Such a clear-cut treatment is unlikely to be 

socially acceptable on a large scale basis, and they may have detrirnental effects on 

stream water quality (Wang et al. 2006) and avian communities that rely on closed 

mature forests (Doyon et al., 2005). Therefore, it should be used sparingly and 

preferably when there is a presence of SM seedling advance regeneration. 

A second silvicultural treatment, which seems more promising, is inspired by the 

abundant SM regeneration that is observed in controls, combined with the AB sapling 

elimination treatment. For stands where AB saplings dominate the understory, we 

propose eliminating those saplings a few years before a selection eut is applied. Once 

SM regeneration is properly established (e.g., 5 years), the selection eut could then be 

implemented; this treatment sequence, which is similar to what is sometimes applied 

in shelterwood cuts, would require further work as we did not directly test it. 

Moreover, as the timing of the AB sapling elimination treatment and selection eut may 

be constrained by operational logistics ( e.g., in terms of planning), another solution 

would then be to combine sapling beech suppression with low intensity harvesting 

(Nolet et al. , 2014) to prevent shrub layer expansion. Based on our results, the 

simultaneous combination of a traditional selection eut with AB sapling elimination 

would not favour strong SM regeneration establishment, as it promotes development 

of the pre-ex isting shrub layer and AB advance seedling regeneration. 

Given differences in fertility, competing shrubs, mast seed years, disturbance and 

meteorological events, we do not claim that our results and proposed silvicultural 

'------ - - - - - - - - - - - - -
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treatments will apply to ali SM-AB dominated ecosystems. In fact, our results rather 

advocate for solutions adapted to local situations than a one-size (i.e. liming)-fits-all 

approach. 

1.6 Conclusion 

A novel aspect of this study is the use of timing in conjunction with canopy opening 

and beech understory removal. This allowed us to test for the first time the interactive 

effects of these three factors on sugat maple-American beech dynamics at the seedling, 

sapling and adult tree stages. Contrary to many previous studies, we found that timing 

did not significantly improve the growth of sugar maple even when it was associated 

with the removal of the understory beech layer and the opening of the overstory canopy. 

Based on these results, we cannat recommend, for sites having similar environmental 

conditions as our study region, the use of liming in our forests to promote sugar maple 

growth over beech. Instead, we believe that treatments involving the complete or partial 

removal of the beech understory are more likely to promote understory sugar maple 

growth and establishment. 
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CHAPITRE II 

EXTREME EVENTS AND SUBTLE ECOLOGICAL EFFECTS: LESSONS FROM 
A SUGAR MAPLE-AMERICAN BEECH CASE2 

2 Ce chapitre vise à être publié dans la revue PNAS. Dans cette revue, la méthodologie doit apparaître à 
la fin. Aussi , on retrouve souvent de courts é léments de la méthodologie dans l'I ntroduction, comme je 
le fais ici. Les sections résultats et di scuss ions sont souvent regroupées et il n'y a généralement pas de 
section conclusion. Les articles y sont relativement courts aussi (environ 3500 mols). Dan Kneeshaw est 
l' autre co-auteur pour cet article . 
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2.1 Abstract 

lncreasing extreme events related to global changes are expected to affect the dynamics 

of forest ecos ys tems. If the disruptive stressors ( e.g. insects, drought) affect tree vigor 

without causing mortality, the ecological effects may be subtle making subsequent 

ecosystem dynamics more difficult to predict than in the case of disturbances causing 

death. We studied a forest ecosystem, dominated by sugar maple and American beech, 

to i) verity whether a change occurred (gradual or abrupt, recovered or not) - in the 

growth dynamics between the two species over a 60-year period, ii) identify the likely 

causes of this change and iii) investigate whether such change could trigger other long­

time ecological consequences. We found that sugar maple growth was negatively 

affected by an extreme event (or a few events) between 1986-1989 while beech was 

not affected. Twenty-years after the 1986-1989 growth drop, sugar maple i) has a 

slower growth than American beech although it was similar before, ii) does not respond 

to monthly climatic variations as it did before the growth drop and iii) had lower 

resilience when faced with a new stressing event. Overall, our study, besides showing 

that extreme events with subtle effect may change the dynamics on an ecosystem, also 

highlights that subtle effects can last for long periods and are therefore more likely to 

interact with other extreme events, stresses or disturbances and accelerate ecosystem 

misadaptations to climate. 

2.2 Significance3 

We report how an extreme climate event triggered subtle changes m tree species 

dynamics, leading to a shift in the species dominance. The exact nature of the event 

(thaw-freeze, drought, insect) is complex but its effects, though subtle, are obvious. 

Twenty-years after a severe growth drop, sugar maple i) continues to exhibit a slower 

3 Cette section, requise par PNAS, ne doit pas dépasser 120 mots. 
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growth than American beech while it was quite similar before, ii) does not respond to 

monthly climatic variations as it did before the growth drop and iii) showed low 

resilience in the face of a new stressing event. Altogether, this study shows that extreme 

events, anticipated to occur more frequently with climate change, may through subtle 

effects on species dynamics accelerate the emergence of ecosystems maladapted to 

their environment. 

2.3 Introduction 

Global changes, changes in natural disturbance regimes (Kurz et al., 2008), increases 

in extreme climatic events (Bell et al., 2004) and the arrivai of new pathogens 

(Ricciardi, 2007) are expected to affect forest ecosystem dynamics in a variety of ways. 

When events kil! trees suddenly (e.g. fire or wind), subsequent forest dynamics are 

fairly predictable and can be relatively easy to mode! (Foster, 1988; Kruger and Reich, 

1997). In contrast, if the disruptive agents ( e.g. insects, drought) affect tree vigor 

without necessarily killing them, the ecological effects may be more subtle. 

Subsequent ecosystem dynamics are then more difficult to predict because many 

interacting plant physiological processes are involved (McDowell et al., 2011; 

Rosenzweig et al., 2001). Incidentally, researchers have recently become interested in 

in pervasive small-scale mortality events, such as increased drougbt-induced mortality, 

that when scaled over large areas arid long time-frames affect a large number of trees 

(e.g. Allen et al., 2010; Peng et al., 2011). Moreover, these subtle effects may last for 

long periods of time depending on the tree vigor at the moment a stress occurs 

(Camarero et al., 2015; Mamet et al., 2015) or if multiple stressors are implicated 

(Denny et al., 2009; Gutschick and BassiriRad, 2003). In a context where we wish to 

predict the effects of climate change and adapt to it (Millar et al., 2007; West et al., 

2009), it is essential to understand how species and individuals recover following such 

non-destructive disruptive events. 



43 

The sugar maple (Acer saccharum Marsh.)-American beech (Pagus grandifolia Ehrh.) 

ecosystem is particularly interesting for such a question because it is generally agreed 

that these two long-lived and late-successional species co-exist - i.e. none seems to 

supplant the other (Poulson and Platt, 1996). Thus, following non-destructive 

disruptive events, we should be able to detect whether there is a change in the dynamics 

between the two species and possible recovery. Moreover, there is an extensive 

literature on the decline in the growth of sugar maple, associated either to acid rain 

(Juice et al., 2006), drought events (Allen et al., 1992; Gavin et al., 2008), thaw-freeze 

events (Payette et al., 1996) or insects (Bauce and Allen, 1991; Hartmann and Messier, 

2008), which suggests that the dynamics between the two species could have changed 

in the last decades in favor of beech. ln addition, sorne studies (Beaudet et al., 1999; 

Grave! et al., 2011) have already identified a change in the dynamics between the two 

species at the regeneration stage. 

Thus, in this article, we wish to i) verify whether a change occurred (graduai or abrupt, 

recovered or not) - in the growth and subsequent species dynamics between two co­

existing late-successional species, viz. sugar maple and American beech, ii) identify 

the likely causes of this change and iii) to investigate whether such change could trigger 

other long-time ecological consequ~nces. This last question is especially critical to 

appraise the reliability of forest models that aim to predict the effects of global change 

on forest ecosystems. 

To answer these questions, we measured the radial growth of more than 150 individuals 

of both species and of various sizes (10-40 cm at DBH- diameter at beast height) over 

a 60-year period. The database used has the particularity that individuals were sampled 

in pairs (one individual per pecies of similar size) to minimize the effects of the 

growing environment - in terms of light and soil conditions - when comparing both 

species growth. 
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2.4 Results and discussion 

2.4.1 Growth decline 

Radial growth of the two climax species, sugar maple and beech, was very similar from 

1950 to 1985 (Figure 2.1A) except for a few years around 1955. From 1975 to 1982, 

there is a growth drop for both species, but because it is observed for both species, it is 

difficult to disentangle whether the growth drop is due to a stress that affected both 

species or simply to self-thinning or tree age. Afterwards, there is an initial sharp 

decline in the growth of maple in 1986, both in absolu te terms and relative to beech. A 

second drop is observed in 1988 followed by a weak recovery in 1990. Between 1990 

and 2005, the growth of sugar maple never recovered to beech's growth rate (Figure 

2.1A, 2.1B). These findings apply to all sampled diameter size classes, but growth 

drops in absolute values are much more pronounced in bigger stems (Figure 2.1C) as 

observed by Mérian and Lebourgeois (2011) for tolerant species affected by drought. 

This more severe growth drop for bigger stems cannot be attributed to a size-effect or 

a natural stand dynamics effects as it is observed across size classes (Figure 2.1C) and 

an additional dataset (Figure B.1) shows that 40-cm DBH sugar maples from the same 

sites had a 2.3-mm*yr-1 radial growth around 1975 whereas similar size SM only grow 

radially at 1-mm *yr-1 nowadays. The abrupt nature of the sugar maple growth decline 

suggests a cause related to an event (or series of events) elf-thinning or tree agegrowth 

drop can be observed in all sites across the landscape suggests that the event is weather 

related or due to a regional disturbance rather than a localized disturbance. After this 

period of recovery, a further drop in the growth of maple is observed in 2006 and 2007. 

2.4.2 Possible causes 

Numerous stress events occurred during the studied period, including forest tent 

caterpillar outbreaks, droughts and thaw-freeze events (Figure 2.1A). The 1986-1989 

sugar maple growth drop seems first associated with the major thaw-freeze event 
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observed in January 1986 and later exacerbated by a drought event in 1988 and possible 

forest tent caterpillar defoliation. As explained by Auclair (1992), after embolisms 

induced by thaw-freeze events, trees are hypersensitive to drought and more vulnerable 

to attack by insects. lt is worth noting that many authors have reported growth drops 

for sugar maple in 1986 and/or 1989 across its range (Bishop et al., 2015; Duchesne et 

al., 2002; Gavin et al., 2008; Hartmann and Messier, 2008; Payette et al., 1996) but 

without consensus about the causes. Moreover, the reasons behind the contrasting 

susceptibility between bath species in the 1986-1989 period remain obscure even 

though sorne hypotheses can be put forward. For example, the strong xylem refilling 

capacity of sugar maple to recover from winter embolism (Hacke and Sperry, 2001) 

could be activated too quickly in the case of an intense thaw-freeze event. This could 

consequently trigger the creation of irreversible emboloisms. It is also possible that 

beech is better adapted to water stress because of an efficient stomacal control of xylem 

embolism (Lemoine et al., 2002) or because its smooth and rather homogeneous bark 

favars stem flow (Frost and Levia, 2014). Despite having indentified thaw-freeze, 

drought and forest tent caterpillar events as possible causes for the 1986-1989 growth 

drop, similar events did not cause such sudden and sustained growth decreases for sugar 

maple during the study period (Figure 2.1A). Obiously, an uncommon perturbation 

occurred during the 1986-1989 growth drop, but historical data are not precise enough 

to determine whether this unusual event was related to the intensity of one of the 

stressors mentionned above or the timing of their co-occurrence (e.g. thaw-freeze event 

followed by a drought). Although it seems improbable, it is also possible that an yet 

unidentified stressor may be the cause of the 1986-1989 growth drop. Nevertheless, 

whatever the exact causes of the 1986-1989 sugar maple growth drop, it appears that 

the sequels caused by the injuries - ·e.g. to the xylem - were irreversible (Bréda et al., 

2006) since sugar maple growth has still not recovered. More research is obviously 

needed to understand the causes of the 1986-1989 sugar maple growth drop and the 
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subsequent general decline; this present study opens the door to the testing of new 

hypotheses (e.g. importance ofthaw-freeze events on long-term tree species growth). 

A) Droughts 
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value signifies a lower growth for sugar maple; the grey boxes indicate 

confidence intervals at 95%. C) Mean sugar maple and American beech radial 

growth by DBH class. Black and blue arrows (panel A) respectively indicate 

drought and thaw-freeze events as indicated by daily meteorological data (see 

methods and supplementary information). Red lines (panel A) show documented 

forest tent caterpillar outbreaks (see methods). 

2.4.3 Consequences of the 1986-1989 growth drop 

Prior to 1986, the radial growth of sugar maple and beech followed each other closely 

(Figure 2.1A). However, after 1989, their radial growth appears independent from each 

other. This result, coupled with the inability of sugar maple's growth to recover to the 

same level as beech after 1989 (Figure 2.1B), clearly reveals a change in the dynamics 

between the two species. Gravel e.t al. (2011) also argued for such change in the 

dynamics between the two species but only at the regeneration stage and without 

providing explanations. If the stressors that led to the 1986-1989 growth drop also had 

an impact on the survival of already established seedlings and saplings of sugar maple, 

it could also explain the relatively low sugar maple regeneration in the -1980 period 

observed by Gravel et al. (2011). Data from an additional dataset support this 

hypothesis as we observe a gap in the regeneration of sugar maple between the years 

1978-1986 (Figure B.2, supplementary information). Thus, the 1986-1989 events may 

not have only changed the growth dynamics relationship between maple and beech for 

mature stems, but also population dynamics at the regeneration stage i.e. increased 

sugar maple seedling mortality. Beech, regardless of the stage considered, was Jess 

susceptible than sugar maple to the stress that occurred during the 1986-1989 period. 

We found surprising the weak association between the two species growth indices after 

1989 surprising (Figure 2.1 and B.2) and investigated it. We found that before 1986 

(1950-1986) and in accordance with Tardif et al., (2001), there was a clear relationship 
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between climatic variables and sugar maple growth as total rainfall in June and July 

and the temperature in June explained nearly 38% (adjusted R2
) of the variance of the 

growth index of sugar maple. For the period 1990-2005, the adjusted R2 drops to 0 

(Figure 2.2). A resampling analysis (see methodology) ensured us that this result was 

not due to a difference in the number of years between the two periods as the confidence 

interval for the adjusted R2 from the resampling analysis was between 0.39 and 0.41. 

For beech, the relationship with climatic variables was already weaker before 1986 -

and probably fortuitos in sorne cases (Table B.1) and remained low after 1989. 

Morevover, none of the mulpiple regression analyses explained further growth 

variation. 1t thus appears that the association between the growth of sugar maple and 

climatic variables was decoupled after 1989, as sugar maple stems capacity to take 

advantage of most favorable climatic conditions likely decreased thus reducing its 

ability to use these favorable periods as a competitive advantage over beech. 

The latest drop in sugar maple growth observed in 2006-2007 (for which no precise 

cause could be identified) also highlights the potentially long lasting effects of the 

1986-1989 stressors. When the relationship between the sugar maple growth drop in 

2006-2007 is compared with the orie in 1986-1989 (Figure 2.3), we observe that the 

trees that were the most affected in 1986-1989 are those that are the most vulnerable in 

2006-2007. This is especially true for bigger stems (Figure 2.3), indicating that growth 

recovery is more difficult for bigger (and older) stems. As a result of this Jack of 

recovery, the difference in growth rates between sugar maple and beech tends to shift 

to the benefit of beech 
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Figure 2.2 Sugar maple and American beech detrended growth indices as 

a fonction of mean June temperature and June-July precipitation. R2 are 

provided for simple regressions while adjusted R2 are provided for multiple 

t·egressions. None of the multiple regression analyses for American beech are 

shown as they did not explain any further variation in growth.Trend !ines show 

significant (p < 0.05) simple linear relationships. Climate variables are presented 

in Figure B.4 
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Figure 2.3 Relative radial sugar maple growth drop in 2006-2007 as a 

function of the relative diameter growth drop in 1986-1989 by DBH classes. 

Trend tines show significant (p < _0.05) simple linear relationships. See methods 

for details on relative growth radial calculations. 

2.4.4 General discussion 

Usually when we refer to extreme events related to climate change, we think of extreme 

short-term effects. In forest ecosy_stems, major droughts (Amoroso et al. , 2015; 

Breshears et al. , 2005) or icestorms (Hooper et al. , 2001) (extreme climatic events) that 
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cause sudden tree death whether punctually as large numbers of trees or as increased 

rates of mortality whose effects are thus observed over a number of years (extreme 

ecological effects) represent examples of this perception (Anderegg et al., 2015; 

McDowell et al. , 2011). The case presented in this study is a reminder that the effects 

of extreme events are often subtle and difficult to detect (Mamet et al., 2015) - as we 

could not identify the causes of the 1986-1989 growth drop with certainty and as the 

drop growth itself required detailed analyses - but may have important long-term 

consequences. Subtle ecological effects induced by extreme events (hereafter, subtle 

effects) present se veral particularities. 

First, subtle effects may last and thus have a long-term influence on species dynamics 

in an ecosystem (Mamet et al., 2015). When an extreme climate event affects an 

ecosystem that contains long-lived species (as is the case for forest ecosystems), the 

event may have long-term repercussions if it affects physiological processes in 

individuals (Gutschick and BassiriRad, 2003; McDowell et al., 2011) -as observed for 

sugar maple growth - that changes the competitive relationship between species. When 

individuals of different species (e.g. sugar maple vs American beech) or different life 

stages within the same species ( e.g. Older versus younger sugar maple ), are not affected 

equally, the extreme climatic event will have a marked effect on the dynamics of the 

ecosystem (Aakala et al. , 2011; Mueller et al. , 2005). 

Second, consideration of subtle effects adds perspective to understanding 

misadaptation, i.e. current ecosystems may be poorly adapted to future climate 

conditions (Williams et al. , 2007). Since sugar maple growth has not recovered from 

the 1986-1989 stress and its growth-climate relationship may have shifted since then, 

this can be interpreted as a warning that this ecosystem is already misadapted to the 

current climate. In other words, extreme climate events that generate subtle effects may 

accelerate ecosystem misadaptation to climate to a point where the resilience of the 
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ecosystem is exceeded and from which the system drifts towards another basin of 

attraction (Walker et al. , 2004). 

Third, as the subtle effects caused by extreme events can last for long periods, there is 

a high probability that they will interact with other extreme events, stresses or 

disturbances to produce compound events (Denny et al., 2013) and decline spirals. This 

is perceptible for bigger sugar maple for which we observed that the most vulnerable 

individuals in 2006-2007 are those . thate were themost severe! y affected during the 

1986-1989 period. The consequences of such interactions between different stressors 

are difficult to predict. For example, for the sugar maple-American beech ecosystem, 

sugar maple decline co-occurs with the arrivai of beech bark disease which kills most 

mature beech trees. This co-occurrence of stressors that affect bigger stems of both 

species could lead to the development of dense recalcitrant understory layers (Royo 

and Car on, 2006), and/or the loss .of forests with old-growth attributes that society 

often wishes to promote (Keeton, 2006). These hypotheses would, ideally, be tested 

through modelling. 

However, our study case also reveals that modelling the subtle effects of extreme 

climatic events is a challenge. How can we 1) forecast the nature of the extreme events 

if we are not sure of the nature or compound effect (thaw-freeze, drought or insect 

outbreak) of the events that triggered past subtle effects?; 2) be certain of the- single 

or compound - effects of the events since they are very difficult to disentangle (as 

shawn in this study); 3) predict which events will not equally affect species, or even, 

individuals of a same species (i.e. ontogenie effects); 4) be sure that we understand the 

relationship between processes (e.g. sugar maple growth after the 1986-1989 period) 

and climatic variables when they are in constant change. Because of uncertainties 

related to extreme climatic events (Easterling et al., 2000), we believe that novel 

ecological modelling approaches should focus 1) on identifying the most important 
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processes to monitor in ecosystems and 2) on assessing the actions to implement to 

increase ecosystem resilience in the face of climate change. 

2.5 Methods 

2.5.1 Study area 

This study was conducted in the Papineau-Labelle Wildlife Reserve (46. 13'48"W, 

75 .09'55"N) of Quebec, between Lakes Montjoie and Du Sourd, and about 100 km 

northeast ofCanada' s capital , Ottawa. The area is located in the eastern portion of Lac 

du Poisson Blanc landscape unit (Robitaille and Saucier, 1998) of the western sugar 

maple-yellow birch (Betula alleghaniensis Britten) bioclimatic region (Saucier et al. , 

2011). The landscape contains numerous bills with elevations < 450 rn a.s.l. and 

averaging 300 rn in height. Mean annual temperature is 3.TC, mean annual 

precipitation is roughly 1100 mm (including 250 mm as snow), and the number of 

degree days above o·c is 2716 (Environment Canada, 2014). Surficial geology for the 

study area is characterized by thin to moderately thin glacial till composed of 

metamorphic rocks, such as gneiss, topped by sandy Dystric Brunisols (GPPC, 2010). 

The forest canopy is dominated by sugar maple in association with yellow birch, 

American beech, American basswood (Tilia Americana L.), ironwood (Ostrya 

virginiana Mill. K. Koch), eastern hemlock (Tsuga canadensis (L.) Carr.), and balsam 

fir (Abies balsamea L. Mill.). 

2.5 .2 Tree sampling 

Ten (10) sugar maple dominated stands, with no tree harvesting in the last 20 years, 

were selected in the fall 2007. In each of these stands, we sampled 16 sugar maple and 

16 American beech, for a total of 160 pairs of the two species divided into four major 

classes of DBH 10-18 cm; 18.1 to 26 cm; 26.1 to 34 cm; 34.1 to 42 cm). To minimize 

the effects of the growing environment - in terms of light and soil conditions - when 
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comparing both species growth, individuals were sampled as part of a pair, one sugar 

maple and one American beech. We considered individuals as a pair if they met the 

following criteria: 

• To have less than 2 cm DBH. difference (in 2007); 

• To be part of the same dominance class ( oppressed, intermediate, co-dominant 

or dominant) 

• To have, in 2007 similar competition from surrounding trees, measured using 

a factor 2 (metric) prism sweep; 

• To be far enough from each other to avoid direct competition for light; 

• To be close enough to each other (e.g. 25 rn) to reasonably assume they grew 

on similar edaphic conditions. 

In addition, a minimum 100 rn-distance was respected between each pair of trees. For 

each tree, a core was sampled to the pi th of the tree (unless trees were rotten) using an 

increment borer. 

Core samples were mounted, and then sanded using increasingly fine sandpaper grits. 

The ring-widths, from 1950 to 2007 were measured to the nearest 0.01 mm using a 40X 

magnification scope and a sliding measurement stage (Velmex lnc., Bloomfield, NY, 

USA), which was coupled to a digital meter. Quality control of cross-dated series was 

checked using both graphical and statistical methods provided by the dplr package 

(Bunn, 2010) in R (version 3.1.0; R Development Core Team 2013) which integrates 

many of the functionnalities of commonly-used dendrochronological software such as 

COFECHA (Holmes, 1983). 

2.5.3 Data analysis 
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ln order to check for a change in sugar maple and beech growth over time (1950-2007), 

we first averaged the radial growth of each species for each year. Second, we calculated 

the difference in radial growth between sugar maple and American beech for each pair 

of trees and for each year. We then calculated the mean difference (and confidence 

interval at 95%) between both species for each year. We visually inspected the radial 

growth patterns of both species for reduced tree ring patterns that could be associated 

with potential stressors: insects, droughts and thaw-freeze events. As the forest tent 

caterpillar (FfC) is known to feed on sugar maple, we used the data documented by 

Cooke and Lorenzetti for the study region (2006) to identify possible FfC outbreaks. 

Drought and thaw-freeze events were identified using the daily data from the closest 

weather station (Mont-Laurier, Environment Canada 2014). We considered a drought 

event to occur when the total amount of precipitation over a 21- continuous day period 

(form May to August) was 5 mm or less. As a comparison, the mean daily precipitation 

for the region in summer is 3 mm. Six drought events were identified between 1950 

and 2007 (Figure B.5, supplementary information). A winter thaw-freeze event 

compounds a warm (usually > 0°C) 'period followed by an abrupt drop in temperature 

(Bourque et al., 2005; Pockman and Sperry, 1997). To identify the most important 

thaw-freeze events over the 1950-2007 period, we plotted each individual day (xi) from 

January and February of each year according to a) the thaw length, i.e., the number of 

consecutive warm days (reaching at least 0°C) and b) the temperature drop, i.e. , the 

difference between the maximum temperature of Xi and the minimum temperature of 

Xi+l). From this analysis, we decided to keep the two most obvious thaw-freeze events 

(Figure B.6, supplementary information). 

To evaluate the relationship between climate and species growth, we first calculated a 

detrended growth index for both species. This detrending process was accomplished in 

two steps (Mérian and Le bourgeois, 2011 ), again using the dplr package (Bunn, 2010). 

First, we fitted a 20-year cubic smoothing spline with a 50% frequency response on 
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each raw measurement series (individuals). Then, for each species, residuals from the 

fitting procedure were averaged by year using a bi-weighted robust mean to obtain a 

growth index (Figure B.3, supplementary information). To verify whether the 

relationship between climatic variable changed after the 1986-1989 growth drop, we 

first performed simple correlation analyses between monthly temperature, precipitation 

and water balance (obtained through BioSIM, (Régnière and Saint-Amant, 2008)) and 

growth indices for both species and for two periods: 1950-1985 and 1990-2005 (i .e. 

before the event of 2006-2007 for this specifie analysis). Climate-growth relationships 

were performed using both current and previous climatic variables. For further 

regression analyses, we kept only variables that appeared to have an influence on 

species growth during the 1950-1985 period (Table B.1). To ensure that the best 

relationships between climate and growth for the 1950-1985 were not an artefact of a 

bigger dataset (36 years compared to 16 for the 1990-2005 period), we performed a 

resampling analysis, in which 1000 samples of 16 random years (between 1950-1985) 

were generated. Multiple regression analyses were perforrned on each of the 1000 

samples and the confidence intervals of the adjusted R2 were compared to the R2 

obtained using all years. This analysis of the stationnary- or non-stationnary - effect 

of climatic variables on growth is inspired from usual stationnary analyses, but it allows 

to i) to directl y test whether there is a change in the climate-growth relationship after a 

specifie event, ii) analyse periods that differ in their length and iii) incorporate a 

multiple regression in the analysis. 

Finally, to verify the presence of a link between the 1986-1989 drop and the one 

observed in 2006-2007, we calculated for each individual maple its relative drop 

growth compared to the growth in the years preceding the drop: 

Relative growth drop in 1986-1 989 (RDG,) = (Gt 98G-1989 - Gt982-1985)/(Gt 982-J985) (1) 

and 
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Relative growth drop in 2006-2007 (RDGz) = (Gzoo6-2oO? - Gzo04-20os)/(Gzoo4-20os) (2) 

where G is the mean radial growth for the identified period. We then performed a 

simple regression between RDG1 and RDGz. All statistical analyses were performed in 

R (version 3.1.0; R Development Core Team 2013). 
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3.1 Abstract 

In a the context of increasing modification offorested landscapes due to an ever-rising 

demand for wood products, conservation areas may fail to maintain terrestrial 

biodiversity if they are not supported by the surrounding managed forest matrix. Forest 

managers today must therefore ensure that their practices protect biodiversity and 

important ecological processes. Worldwide, forests are managed by one of two broad 

approaches - even- and uneven-aged silviculture. Despite the lack of a thorough 

literature comparison of the ecological effects of these two approaches, there is an 

entrenched belief that uneven-aged silviculture is better at protecting biodiversity and 

key ecological processes. We reviewed more than 70 papers worldwide to compare 

even- and uneven-aged silviculture regarding their effects on species/structural 

diversity and functions, ali being elements that con tribu te to forest resilience. Although 

both approaches affect these elements, we found that uneven-aged silviculture does not 

systematically favour species/structural diversity and functions compared to even-aged 

silviculture. Our review thus provides compelling evidence to support the need for a 

diversity of silvicultural techniques to support diversity and function while earlier 

argument were proposed primarily on the basis of disturbance regimes or observed 

distribution. 

3.2 Introduction 

Forests are used primarily for extracting wood to fulfil human needs but they also 

provide important habitats to two-thirds of terrestrial organisms (Duraiappah et al., 

2005) and thus are of conservation concern. As the human population is projected to 

reach 8.2 billion people by 2030, the demand for wood products will also inevitably 

increase (FAO, 2009), intensifying the pressure on non-protected forests to be managed 

for wood production. In such a context, conservation areas may fail to maintain 
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terrestrial biodiversity if they are not supported by the surrounding managed forest 

matrix . However, the contribution of the managed forest matrix to biodiversity 

conservation depends on silvicultural practices that provide suitable habitats and 

maintains ecological processes (Messier et al., 2013). 

In recent decades, there has been rising public pressure against the systematic of even­

aged silviculture around the world because of its perceived negative aesthetic and 

ecological impacts. lt has also been shown that the overuse of even-aged techniques 

has led to changes in forest structure and biodiversity compared to natural systems 

(Bergeron et al. , 2002; Cyr et al., 2009; Paillet et al., 2010). Many authors have 

proposed alternatives to traditional forestry, ranging from better protection of key 

elements within managed ecosystems (Franklin et al., 1997), an increased proportion 

devoted to forest ecosystem conservation (Seymour and Hunter, 1992), and decreased 

use of even-aged silviculture in favour of uneven-aged silviculture (O'Hara, 2002) 

(See Panel 1 and Figure 3.1 for · a brief description of even- and uneven-aged 

silviculture). The latter grew due to an influence of European forestry and continuous 

cover techniques, a desire for increased 'naturalness', and in western North America 

coa tai forests due to the rarity of large-scale natural disturbances. In regions where 

small-scale natural disturbances, such as partial windthrow or individual tree mortality 

due to insects or diseases are prevalent, forests would be better reproduced by uneven­

aged silviculture (Gillis, 1990). Sorne authors have in fact called for a gradient of 

silvicultural techniques from even-aged total cuts to smaller openings to continuous 

cover forestry (Gauthier, 2009; Schütz, 2002). Moreover, the belief that uneven-aged 

forest management is a more appropriate tool has spread among various groups, 

ranging from foresters (e.g., O ' Hara and Ramage, 2013) to forest ecologists (e.g., 

Déchêne and Buddle, 2009) and environmentalists (e.g., Pro Silva, 2012). The IUFRO 

uneven-aged silviculture group clearly states (IUFRO, 2016) : "A resurgent interest in 

uneven-aged silviculture is occurring ali over the world as it is increasingly seen as a 
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viab le alternative to even-aged systems where concerns over aesthetics, resilience to 

climate change, wildlife management, or maintenance of continuous caver 

predominate." In Europe for example, recent decades have seen the direct 

transformation of ex isting even-aged plantations to mixed, uneven-aged managed 

fo rests (Pommerening and Murphy, 2004). Nevertheless, a thorough and unbiased 

comparison of the existing literature on the effects of these two approaches is lacking 

with respect to key ecological processes. 

Panel 1: Brief description of even- and uneven-aged silviculture 

Even-aged silviculture is a set of silvicultural treatments that favour the regrowth 

of a stand dominated by trees that are mostly of the same age. Uneven-aged 

silviculture is a set of silvicultural treatments that favour regrowth of at least three 

age classes (Helms, 1998}. The two approaches differ in their implementation 

spatially and temporally. Even-age.d management implies a clear-cut, or a final eut 

that resets the stand ta a regeneration stage sa that stems grow surronded by 

stems with similar ages and sizes. Uneven-aged management implies repeated 

partial cuts that regenerate the stand more continuously and leave sorne 

permanent forest caver sa th at stems grow surronded by stems with highly varying 

ages and sizes. Because the a mount of timber harvested per unit of surface in one 

entry is not the sa me for bath approaches, for a sa me amou nt of timber harvested, 

the footprint in the forest that is left by the two systems differs (Figure 3.1}. 



62 

Figure 3.1 Schema tic representation of the difference in the landscape 

structm·e between A) even-aged and B) uneven-aged silviculture. In even-aged 

silviculture, trees in each stand are surrounded by trees with similar ages and 

heights while in uneven-aged silviculture, trees are surrounded by trees of 

varying ages and heights. In both cases, smaller trees are expected to replace 

larger trees once the latter are harvested. 

In this article, we question whether the more socially and aesthetically appealing 

uneven-aged silvicultural approach is better suited than even-aged silviculture to 

maintaininglpromoting biodiversity and key ecological processes as weil as promoting 

ecosystem res ilience. To answer this question, we first summarize a literature review 

of scientific papers that included a comparison between effects of even- and uneven­

aged silviculture on diversity of various taxa and measurement of various ecological 

processes, covering various types of fo rests from forest biomes around the world. We 
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lhen explain the management/policy implications of our findings and how they can 

contribute to the debate- among foresters and conservationists- regarding the best use 

of even-aged and uneven-aged silviculture. 

3.3 Literature review 

3.3.1 Approach and rationale 

Favoring ecosystem resilience is often seen as a solution to help forests to adapt to 

global changes (Millar et al., 2007; Thompson et al., 2009). However the literature on 

the effects of even- and uneven-aged silviculture on forest ecosystem resilience is 

almost inexistent - and is probably related to the difficulty of measuring resilience 

(Neubert and Caswell, 1997). In this paper, we refer to resilience as "the capacity of a 

system to absorb disturbance and reorganize while undergoing change so as to still 

retain essentially the same function, structure, identity, and feedbacks" (Walker et al., 

2004). Moreover, we answer the question "Resilience of what to what" (Carpenter et 

al., 2001) with of what being of forest ecosystems (not species or genes) at any scale 

and with to what being any new stressor triggered by global changes. Ecosystem 

resilience is often related to the complexity of interactions between the various 

components and processes of an ecosystem (Puettmann et al., 2013). In this sense, each 

component and process has a role in the resilience of the ecosystem. From this premise, 

we performed a literature review to compare the effect of even- and uneven-aged 

silviculture on a large array of ecological indicators. Even though ali indicators may 

not ali have the same importance for ecological resilience, we do not judge the merit 

of the indicators proposed but rather follow the logic that these are indicators that have 

value both to society and ecologically (Eibakidze et al., 2011; Kneeshaw et al., 2000). 
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To perform the li terature review, we searched for scientific papers (rather than 

dissertations or technical reports, which are not always in scientific databases) that 

included a comparison between effects of even- and uneven-aged silviculture on one 

or many ecological indicators. We used comparisons from ali different forest 

ecosystems where the comparison was available to identify whether the underlying 

relationships were ecosystem-dependent. We complemented this initial search with 

meta-analyses and reviews that dealt with the impact of canopy removal intensity on a 

wide variety of elements of ecological resilience. Our search was performed using three 

different scientific databases: Web ~f Science, Scopus, and Google scholar. Because 

many words other than "even-aged" and "uneven-aged silviculture" may be used to 

refer to these systems ( e.g., clear-cut, selection eut) and because keywords did not 

always indicate a comparison between the two silvicultural approaches of interest, we 

could not use an "automated" search. Instead, we carefully evaluated severa! hundred 

abstracts that contained "even-aged," "uneven-aged," "selection eut" or "clear-cut," 

and verified whether there was an .even/uneven-aged ecological comparison. Sorne 

studies were likely missed since forest ecologists do not always use forestry terms to 

define the silvicultural treatment under study. We provide an example of results of the 

review for tree species (Table 3.1), while the results for other elements of resilience are 

provided as supplementary information (Tables C.l-C.9). When summarizing a paper, 

we attempted to be true to the interpretations that the au thors made of their own results 

regarding the compared effects of .even- and uneven-aged silviculture. Figure 3.2 

shows the geographical distribution of the 70-plus studies found in our literature 

review. Despite our goal of being geographically representative, published studies are 

primarily concentrated in the Northern Hemisphere and mostly in the Americas. 

Although the studies were conducted in forests of varying species composition, most 

were conducted in forests that were dominated by deciduous forest species. 



Table 3.1 

Elements 
stud ied 

Diversity 
(Shannon) 

Rich ness 

Regeneration 
rich ness 

Regeneration 
Rich ness 

Diversity 
(Shannon) 
Richness-plot 
Richness-site 

Rich ness 
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Literature comparing even- and uneven-aged silviculture for tree 

species diversity 

Effect Time/spatial Biome 
scale 
consideration 

EAS>UAS>UC 40 years after Tem perate 
t reatment/ No Deciduous Forests 

EAS=UC >UAS .~ 10 yrs post- Temperate 
treatment/No Deciduous Forests 

EA=UC=UAS 1 year post- Temperate 
t reatment/No Deciduous Forests 

EAS=UAS>UC 11 years post- Tropical Moist 
treatment/Yes Forests 

UAS=EAS=UC 4 years post- Tempe rate 
treatment/No Deciduous Forests 

UAS>EAS; UAS=UC 
UAS=EAS=UC 

UAS>EAS=UC Undefined/ No Mediterranean 
Forests 

Reference 

Niese and Strong 
(1992) 

Doyon et al. (2005) 

Messina and 
Schoenholtz (1997) 

Parrotta et al. 
(2002) 

El liott and Knoepp 
(2005) 

Torras and Saura 
(2008) 

Legend : EAS: Even-aged silviculture; UAS: Uneven-aged silvicu lture; UC: Uncut. The co lumn Effect refers 

to what is generally preferable in terms of ecosystem resilience. For example, UC>UAS>EAS means that 

for this indicator uncut stands performs better than uneven-aged silviculture, which in tu rn performs 

better than even-aged silviculture. The column Ti me/spatial scale consideration provides information 

about the ti me sin ce harvesting or the various stages studied for EAS. Also, as most pa pers have 

focused on stand-scale effects, this co lumn gives information ("/Yes "or "/No") w h ether the authors 

included a landscape consideration in their analysis or discussion. For Biomes, see Figure 1. 
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Figure 3.2 Approxima te location and species composition of the reviewed 

studies in relation to forest biomes. The term "various" means that studies were 

conducted in more than one forest composition. 

3.3.2 Generalities 

The following sections pro vides, for each taxa (or group) and process, a short summary 

of our findings. This summuray first airned at assessing whether an approach (even- or 

uneven-aged silviculture) clearly outperforms the other one for a given taxa or process. 

Second, it aimed at identifying general factors that must be considered when comparing 

even- and uneven-aged silviculture and also short-comings that should be avoided in 

the comparison of the approaches. Hence, it was not our intention to try to explain 

contadicting results arnong studies. 

3.3.3 Flora 

We identified a surprisingly limited number of studies comparing effects of even­

/uneven-aged silviculture on tree species diversity and composition (Table 3.1 ). From 

the limited number of studies found in our literature review, even-aged silviculture 

--------
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tends to favour species richness compared to uneven-aged silviculture at the stand 

level, which could be considered positive for forest resilience as it con tribu tes to spread 

the risk in case of a major stress or perturbation (Millar et al., 2007). Niese and Strong 

(1992) consider that uneven-aged silviculture may lead to dominance or monocultures 

of late-successional species. Even-~ged silviculture often triggers larger changes in 

species composition than does uneven-aged silviculture (e.g., Parrotta et al., 2002), but 

this does not necessarily mean a loss of resilience if the new species composition 

continues to provide important ecosystem services (i.e., Holling' s re-organization 

phase; Drever et al., 2006). However, in terms of maintaining sorne key functional 

traits, the loss of species is a concern if the rotations that are used for even-aged 

silviculture are too short for the reçruitment of late-successional species. It can also 

lead to state shifts at the landscape or regional scale if the matrix shifts from one that 

is dominated by late-successional to early successional species (Gauthier et al., 2009). 

Understory (shrubs and herbs) species diversity has been studied much more than tree 

species diversity in comparisons of even-/uneven-aged silviculture (Table C.l). From 

the literature review, it does not appear that either type offorest management negatively 

affects understory species richness ~md diversity in the longer-term. However, even­

aged silviculture may have a strong impact on understory plant species composition in 

the short-term (e.g. , Haeussler et al., 2007). This short-term impact is apparently 

influenced by the level of soil disturbance incurred during harvesting operations (Kern 

et al., 2006). Over the longer term and using a meta-analysis, Duguid and Ashton 

(2013) showed that the effect of even-aged silviculture on richness depended upon the 

development stage, with the lowest diversity found at the understory re-initiation stage 

(about 30-50 years after harvest). These results highlight the importance of studying 

various stand development stages after even-aged silviculture when making 

comparisons with uneven-aged silviculture as differences between the two systems 

may vary, depending on the even-aged development stage to which the comparison is 
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made. A few studies reported that uneven-aged silviculture could trigger the 

development of a dense shrub layer (Decocq et al., 2013), a phenomenon observed 

worldwide that strongly influences understory forest dynamics (Roya and Carson, 

2006). 

For structural elements, it is difficult to draw clear conclusions regarding major long­

term differences found between even- and uneven-aged silviculture (Table C.2), since 

results depend upon the ecosystem being studied, the manner in which treatments were 

implemented, and the mann er in which data were collected ( e.g., minimum diameter of 

dawn woody debris). Y et it is clear from our review that an overallloss of structural 

diversity occurs in managed forests for bath even- and uneven-aged systems. This 

supports the idea that there is a need for un-managed stands in landscapes to promote 

forest resilience. 

Very few studies have compared mycorrhizae, lichens, bryophytes, fungi and bacterial 

communities between even- and uneven-aged silvicultural systems (Table C.3). While 

microbial communities do not seem to respond strongly to forest management, one 

study by Kropp and Albee (1996) reported a marked decrease in ectomycorrhizal fungi 

richness in relation to harvesting intensity in lodgepole pine forests in Utah, with a total 

of 33, 24 and 5 species identified respectively for control, partial eut and clear-cut 

stands. These elements of the forest ecosystem definitely require deeper attention, 

especially mycorrhizae because of their fundamental importance in the functioning of 

forest ecosystems (Simard, 2009). 

3.3.4 Fauna 

For bath mammals (Table C.4) and birds (Table C.5), population responses to even­

uneven-aged silviculture are species-specific and not generalizable across aU taxa 

indicating no consistent pervasive effect of either management type. However, birds 
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(e.g., Morris et al., 2013) are more strongly associated with distinct forest development 

stages and forest structures than are mammals . lt is also clear from the review that 

uneven-aged silviculture that is practiced uniformly across a landscape reduces avian 

diversity, while this trend is not as clear for mammals. For both taxonomie groups, time 

since treatment is important. For example, Thornton et al. (2012), in coniferous forests 

in Idaho, showed that in the short-term, both clear-cuts and partial cuts negatively 

affected snowshoe hare (Lepus americanus). However, older clear-cuts (15- to 40-

years-old) were the best habitat for this species. In oak forests of Missouri, Morris et 

al. (2013) , observed that sorne earl y negative effects of both even- and uneven-aged 

silviculture on sorne bird populations were still apparent 14 years after harvest, while 

they did not last for others. At the landscape level, Becker et al. (2011) showed that the 

abundance of all avian guilds increased with forest harvesting in West Virginia until a 

guild-specific harvest threshold (proportion of the landscape under forest management) 

was attained. Once this threshold was exceeded, forest-interior and interior-edge guilds 

were disadvantaged, and primarily. by clear-cuts. Hence, in terms of resilience of 

mammals and birds, neither the even- nor the uneven-aged approach outperforms the 

other. 

Although responses of amphibians and reptiles (hereafter, referred to as "herps") are 

also species-specific, any kind of forest management, i.e., uneven-aged or even-aged, 

appears to be more detrimental to herps than to birds or mammals (Table C.6). In fact, 

positive responses of herp species to any ki nd of logging are rarely observed, especially 

towards clear-cuts at the stand scale. Tilghman et al. (2012), in their meta-analysis, 

observed that populations generally recovered as the forest regenerated, while 

Hom yack and Haas (2009) observed no recovery 13 years after harvesting by even- or 

uneven-aged silviculture. Considering the multitude of entries on uneven-aged 

compared to even-aged selection silviculture, the latter authors were not convinced 

regarding environmental benefits of selection cuts at the landscape level. 
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According to our review, invertebrates (Table C.7) are not very sensitive to the 

silvicultural system being used (even- or uneven-aged, e.g., Johnston and Holberton, 

2009). However, severa! authors highlighted the importance of unmanaged forests in 

the landscape (du Bus de Warnaffe and Lebrun, 2004; Summerville, 2011). In 

Michigan and Wisconsin, Latty et al. (2006) showed that beetle communities in stands 

that were recently managed using uneven-aged silviculture and others that were 

managed in the past with even-aged silviculture were very different from those of old­

growth forests, even if there were few species that were strictly associated with the 

different types of disturbance history.. The au thors estimated that at the landscape scale, 

insect species that preferred old-growth forests have declined to a large extent. As with 

herps, both silvicultural approaches have negative effects. 

3.3.5 Carbon and nutrients 

From our review of the available literature, we cannot conclude that one silvicultural 

system outperforms the other in ter!Ils of its ability to sequester carbon (Table C.8). 

First, many studies were conducted at a single moment in stand development and most 

very shortly after treatment (e.g., Lee et al., 2002; Laporte et al., 2003). The most 

complete studies, based upon simulations (Pukkala et al., 2011; Moore et al., 2012; 

Nunery and Keaton; 2012) or long-term measurements (Nilsen and Strand, 2013), 

provide equivocal results in terms of the best silviculture approach to sequestering or 

store carbon. These contradictions ~a y be due to the complexity of the calculations, as 

acknowledged by Moore et al. (2012), who emphasized that the accuracy of their 

results depended upon severa! factors, including the forest products that were 

generated. Nunery and Keeton (2012) even showed that variations in the use of even­

aged silviculture that included various intensities of structural retention stronly 

influence carbon storage. 
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The effects of even- versus uneven-aged silviculture on sail processes and functions 

are two-fold (Table C.9). First, it appears that the effects of bath silvicultural 

approaches on the sail are limited (sail chemistry or density; e.g., Elliott and Knoepp, 

2005). If we examine sail water or stream water, strong effects are observed. Siemion 

et al. (2011), in New York State, showed that above a certain harvesting intensity 

(about 40 % of the watershed), nitrate and calcium concentrations in sail water 

increased linearly with harvesting intensity. Above this threshold --most likely to be 

encountered in even-aged silviculture -- concentrations increased more rapidly than 

harvesting intensity. Wang et al. (2006), also in New York, observed a roughly linear 

relationship between harvesting intensity and changes in aluminum, calcium and 

magnesium concentrations in stream water. Changes in concentrations for nitrate 

(about 5 X) and potassium (about 100 X) were not linear but increased exponentially 

after clear-cutting. Stream water chemistry returned to near-pre-harvest conditions 

about one year after harvest, except for nitrate concentrations. Although they occur for 

only a very limited time, these increased inputs in nutrients are liable to shift ecosystem 

states (watercourses in this case; e.g. (Rask et al., 1998)). 

3.4 Discussion 

Given the array of ecos ys tems and ecological indicators to be considered, a first general 

observation of our study is the surprising limited number of studies tbat compare, in 

terms of their ecological effects, the 'two largest categories of silvicultural approaches­

even- and uneven-aged. Based on this literature review and on the premise that the 

ecological indicators examined contribute to forest ecosystem resilience, we conclude 

that views suggesting that uneven-aged silviculture is better suited than even-aged 

silviculture for promoting forest resilience in a global change context - as weil as the 

shift in practices in Europe (Pommerening and Murphy, 2004)- is not substantiated by 

sound scientific results. Specifically, this literature review shows that even-aged 
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silviculture does not necessarily mo~ify biodiversity and forest ecosystem functioning 

more than does uneven-aged silviculture (Table 3.1, and Tables C.1 to .9). In fact, the 

ecological effects of even-aged silviculture at the stand scale are rarely as large as the 

changes in the appearance of a forest stand that occur just after clear-cutting would 

suggest. This conclusion applies primarily to even-aged silviculture that is based on 

natural regeneration. For most studies that were reviewed, clear-cutting was not 

followed by tree planting. Since tree planting generally implies site preparation and 

control of vegetation competition (Lindenmayer et al., 2012), it is likely that it has a 

more pronounced ecological effect than does natural regeneration-based, even-aged 

silviculture. Despite our initial intention to caver a wide variety of forest ecosystems, 

only a few studies could be found in sorne forest biomes (e.g., tropical rainforest) or in 

sorne regions of the globe (e.g., Asia). Therefore, current evidence does not permit our 

conclusion to be generalized to ail f.orest biomes and regions of the globe. Moreover, 

as we analysed only papers that compared even-and uneven-aged silviculture, it is 

possible that key ecological processes have not been analysed in our comparison. Our 

study then should be useful for researchers to eveluate whether their specifie domain 

of research bas been weil covered in the literature in regards of even- and uneven-aged 

silviculture. 

The absence of clear and unambigilous differences in short-term ecological effects 

between even-aged and uneven-aged silviculture at the stand scale cannat be easily 

transposed to the landscape scale for two different reasons. First, the lack of differences 

at the stand scale may not be the same if only one of the two approaches was applied 

systematically across a landscape. In our review, the proportion of the landscape that 

was managed by each system was generally not specified. Second, comparisons 

between even- and uneven-aged silv'iculture should not ignore the area that is affected 

by uneven-aged silviculture is much larger (e.g., 4-5 times), given the same quantity of 
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wood being harvested annually (assuming similar productivity between the two 

systems). 

As a conceptual example, consider that the ecological short-term impact (for a 

hypothetical taxon or process) is respectively 10 for even-aged and 8 for uneven-aged 

silviculture at the stand scale (Figure 3a) for each hectare that is harvested. lt could be 

the impact on the size of a population of an amphibian species for example. If the area 

affected by harvesting is 4 times larger for uneven-aged silviculture than for even-aged 

silviculture, it means that the overall short-term ecological impact reported at the 

landscape level would be much larger for uneven-aged silviculture (Figure 3a). 

Furthermore, recovery (time to return to a pre-harvest condition or any desired 

condition) may be longer (e.g., Haeussler et al., 2007) for even-aged than for uneven­

aged silviculture since the volume of wood harvested is larger in even-aged silviculture 

(Figure 3b). Given the same ratio of short tenn stand-scale impact, even if recovery 

rates at the stand level were 2 to 4 times longer for even-aged silviculture, the 

ecological impact of uneven-aged silviculture would be larger than with even-aged 

silviculture over most of the 80-year rotation (Figure 3c) because its impact is spread 

over four times the area, each year. The comparison of the relative impacts of both 

systems could consider the area under the curve for a given period of time starting from 

the present condition of the forest landscape. 
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• EAS 

• UAS 

Site Landsca pe 

Spatial scale 

Time (yrs) 

10 20 JO <0 50 60 70 80 

T1me (yrs) 

Simulated landscape scale ecological long-term impact of EAS 

and UAS (C) based on hypothetical short-term impacts of UAS as 80% of that of 

EAS hypothetical short-term impacts (A) and recovery rates (B). A) shows that 

short-term impacts (hypothetical variable) differ strongly at the landscape level 

between EAS and UAS because more surface is affected by forestry operations to 

harvest the same wood volume each year when UAS is used. B) Recovery rates: 

for UAS the theoretical recovery rate shown is such that at the end of a 20-year 

cutting cycle, the hypothetical variable recovered toits pre-harvest state; for EAS, 

two recovery rates are provided: Yz and 1/4 the recovery rates of UAS. 
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This simple example highlights the complexity of comparing even- and uneven-aged 

silviculture as i) the scaling up from the stand to the landscape scale is often much more 

complex than a simple multiplication (e.g bird populations that are affected by the 

spatial assemblage of forest stands, Becker et al. (2011)) and ii) as recovery rates (e.g. 

Wang et al. 2006), which require long-term assessments, are often not known. 

Given the importance of spatial and time scales in the even- vs uneven-aged silviculture 

comparison, it is very surprising that most of the studies we reviewed did not consider 

spatial scales in their comparison and that most comparisons were drawn at only one 

moment in time (Tables 3.1 and Table C.1 to C.9), ignoring that most ecosystems 

recover after harvesting. A fair comparison would be to contrast average or changing 

effects of even-aged and uneven-aged harvesting over one full even-aged stand rotation 

(say, 80-100 years) and for an equivalent time for uneven-aged stands over many 

cutting cycles (e.g., 4 or 5). Studies on the ecological comparison of even- and uneven­

aged silviculture should embrace its inherent complexity rather than ignoring it and 

focus on the ecological indicators that appear the most important for forest resilience 

in a given region. 

3.4.1 Management implications 

While our review showed that even-aged silviculture does not necessarily have larger 

ecological effects than uneven-aged silviculture following harvesting, we found little 

evidence regarding the cumulative effects of implementing either systems over a whole 

landscape. Our review revealed strengths and weaknesses, in terms of ecological 

impacts, for both even-aged and uneven-aged silviculture. For example, even-aged 

silviculture appears to be better uited than uneven-aged silviculture for promoting tree 

and plant species (alpha) diversity, at !east at the stand scale. Of course, more diversity 

is not always better as the nature of the diversity should be considered especially if 

generalist or non-forest species increase. The various stand development stages that are 
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created by even-aged silvicul ture at the landscape scale scale (gamma diversity) also 

contribute to bird and marnmal species diversity. However, there are also sorne 

ecological effects, which are of concern when clear-cutting/even-aged silviculture is 

used. This is true fo r sorne structural elements (Rüger et al. , 2007), mycorrhizal fungi 

(Kropp and Albee, 1996), lichens an~ bryophytes (Paillet et al. , 2010), sorne amphibian 

species (Tilghman et al. , 2012), soil integrity (Spinelli et al. , 2010), and surficial water 

runoff (Wang et al. , 2006). These ecosystem elements are more fragile and seem better 

maintained by uneven-aged silviculture. We thus argue that both even-aged and 

uneven-aged silvicultu re can have negative effects, which are scale- and organism­

dependent. Moreover, variations in even- and uneven-aged silviculture should be 

implemented (e.g. Nunery and Ke~ton, 2012) to mitigate these negative effects by 

creating and conserving a larger gradient of habitat types (Panel 2). 

Panel 2: Possible variations in the implementation of even-aged and uneven-aged 

silviculture 

Even-aged and uneven-aged silviculture are not strict concepts and bath include 

several silvicultural systems (Matthews, 1989). Moreover, variations in their 

implementation can be used to mitigate their respective negative effects. 

Clear-cutting (and therefore, even-aged silviculture) is of concern for sorne of the 

contributors to resilience that were evaluated. The protection of soils, which has 

been widely applied to mitigate sail erosion and rutting, is a good example of an 

improved silvicultural implementa~ion . ln addition, the more recent introduction of 

variable retention treatments that maintain sorne elements of biodiversity and 

structure is an important step towards a silviculture of resilience (Franklin et al., 

1997; Lindenm ayer et al., 2012) 



77 

Likewise, specifie treatments can also be implemented in uneven-aged silviculture 

to promote tree species diversity. For example, it may be appropriate to create 

larger gaps (e .g., greater than 20 m radius) to promote recruitment of less tolerant 

species in selection cuts (Lorenzetti et al., 2008) . ln contrast, to avoid invasion in 

the shrub layer after partial cuts (Angers et al., 2005; Decocq et al., 2013; Zhou et 

al., 2013), reduction of harvesting intensity (proportion of the stand harvested) has 

been suggested at each cutting cycle (Nolet et al., 2014). 

Moreover, ali silvicuJtural systems can be applied in various spatial configurations 

(Matthews, 1989). A significant portion of the differences that are observed 

between even- and uneven-aged silviculture may be due to comparing large clear­

cuts to single-tree selection cuts. 

By challenging the preconceived notion that uneven-aged silviculture is necessarily 

better than even-aged silviculture in terms of its lower negative impacts on biodiversity 

and many ecosystem functions, · this review provides collective support for 

divers ification of silvicultural techniques that has previously been suggested from 

indirect reasoning (Duguid & Ashton 2013; Gauthier et al 2009). Hence, it opens the 

door to greater flexibility in the use of the two silviculture approaches for promoting 

forest resilience. However, the implications of this greater flexibility differs according 

to the proportion of even-uneven-aged currently used in forest ecosystems. For 

example, in temperate fo rests of north-eastern America, uneven-aged silviculture is 

currently preferred to even-aged silviculture (Nolet et al., 2014) in part because it 

appear doser to the natural disturbance regime (Seymour et al. , 2002). For these 

forests, an increase in the use of even-aged management would probably favour 

resilience through an increase in both alpha and gamma diversity. In other ecosystems 

such as the Canadian boreal forest, the use of even-aged silviculture dominates and the 
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use of uneven-aged silviculture is still very limited (Bose et al., 2013). For these 

predominantly even-aged managed ecosystems, in contrast to north-eastern temperate 

forests, this greater flexibility in approaches would then suggest an increase in the use 

of uneven-aged silviculture as suggested by Bergeron et al., (1999) based uniquely on 

disturbance dynamics rather than an analysis of real effects on biodiversity. 

The proportion of even-/uneven-aged silvicuture to use in a landscape should however 

be specifie to its ecological, economie and social situation as there is no one-size-fits­

all solution. We provide (Table 4) a series of questions for decision-makers to assist 

them in evaluating the extent to which one approach should be favoured over another 

in a given region. We argue that during the forest management planning process, forest 

managers should identify contributors to ecosystem resilience, which are related to the 

most important risks to their forests. They should then optimize the planning of 

silvicultural treatments that would attain targets related to these contributors. In other 

words, even-/uneven-aged systems should be used as a means of achieving goals rather 

than as an end in themselves. The integral protection of a proportion of the landscape 

from timber harvesting should also be part of a diversity conservation strategy, since 

many studies in our review showed that uneven-aged silviculture was neither better nor 

worse than even-aged silviculture; significant differences emerged between managed 

forest and unmanaged forests, viz., some ecosystem elements and functions cannat 

tolerate any form of timber harvesting. 
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silviculture in a given region 
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ln favor of uneven-aged if answered ln favor of even-aged if answered 

positively positively 

• Does even-aged management imply • Does a dense shrub layer often develop 
artificial regeneration and site following partial cuts? 
preparation? • Are variable retention guidelines after 

• Are there invading/exotic species that even-aged management weil integrated 
may be favored by even-aged in day-to-day timber harvesting? 
management? • Are there species sensitive to road 

• Are soils sensitive to erosion? construction/maintenance? 

• Are there species sensitive to large • Are there desired species requiring 
openings? large openings? 

• ls even-aged management highly • ls uneven-aged management highly 
dominant in the landscape? dominant in the landscape? 

3.5 Conclusion 

Based on an exhaustive literature review comparing the effects of even- vs uneven­

aged silvicul tural systems on many ecological factors, we conclude that current views 

suggesting that uneven-aged silviculture is better suited than even-aged silviculture fo r 

promo ting fo rest resilience cannat be substantiated. This finding provides the scientific 

support to forest and conservation managers for diversifying and optimizing their 

practices to promote forest resilience as biodiversity is being threatened by many 

different co-occurring changes and stressors. Historically, even- and uneven-aged 

silvicul ture had their promoters for economie, social or ecological reasons. While the 

dichotomy between even-aged and uneven-aged silviculture may still be important 

economicall y and also in terms of social acceptability (although not reviewed in the 

present paper), we argue that one approach cannat be promoted over the other based 

solely on ecological grounds. 
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Our review also reveals that studies that compared even- and uneven-aged silviculture 

on a large array of ecological indic~tors and on adequate time and spatial scales are 

rare. Given the role of forest management in biodiversity conservation, we advocate 

the implementation - in ail forest biomes - of long-term studies comparing even- and 

uneven-aged silviculture using ecological indicators that cover various spatial scales. 
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CHAPITRE IV 

CONCLUSION GÉNÉRALE 

Une série de liens peuvent être tissés entre certains résultats obtenus à travers les 

différents chapitres (Figure 4.1 ). D ' abord, dans le premier chapitre, nous avancions 

déjà l' hypothèse que l' absence de réaction de l' érable à sucre au chaulage (1.1) soit 

due au fait que les tiges d ' érable à sucre auraient subi des stress qui les auraient rendues 

physiologiquement incapables de répondre positivement à une fertilisation. Cette 

hypothèse est soutenue (Lien 1) par nos résultats du chapitre 2 qui démontrent que les 

érables de la région à 1' étude ont subi des stress importants au cours des périodes 1986-

1989 et 2006-2007 (2.1 ). 

Nos résultats, toujours au chapitre 1, montrent que la dominance de l' érable à sucre et 

du hêtre diminue avec les coupes totales (1.2). Ce résultat est en concordance (Lien 2) 

avec ce que nous avons observé dans notre revue de littérature (3 .1). Cette diversité en 

essences forestières contribue par la suite à augmenter la diversité d' autres taxas (Lien 

3). Dans les deux premiers chapitres, on remarque que les facteurs écologiques ont un 

effet différent chez l' érable à sucre selon la taille des individus considérés. Étant donné 

que dans le premier chapitre, ce sont surtout les semis qui sont favorisés par les coupes 

totales et que dans le deuxième chapitre, ce sont les plus grosses tiges qui sont les plus 

affectés par les événements extrêmes (L4 ), il est logique, dans un contexte de résilience 

face aux changements climatiques, d' envisager utiliser 1' aménagement équienne pour 
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une proportion des érablières à hêtre de la région (L5). Cette idée est supportée par le 

fait que les tiges ayant subi des stress importants semblent plus fragiles aux stress 

subséquents et que baser l' avenir des peuplements forestiers sur ces tiges est pour le 

moins risqué. 

Ainsi, les résultats de la présente thèse, pris dans leur ensemble, supportent l' idée 

d'utiliser l' aménagement équienne dans les érablières à hêtre de la région à l'étude. 

Toutefois, il serait décevant que la thèse soit perçue comme un plaidoyer en faveur 

d'un aménagement forestier basé uniquement, ou même principalement, sur 

l' aménagement équienne. Tel que mentionné dans le chapitre 3, une diversité de 

traitements sylvicoles doivent être envisagés pour faire face aux nombreuses surprises 

que nous réservent les changements climatiques. 

D'une façon plus générale, les chapitres de ma thèse pris dans leur ensemble montrent 

que la recherche en écologie forestière, d 'une part, et que la recherche en sylviculture, 

d'autre part, ont avantage à être intimement liées, et ce, principalement dans w1 

contexte de changement global. L' ère dans laquelle où on pouvait espérer prédire de 

façon précise et sans risque de se tromper les effets de l' application de « recettes » 

sylvicoles est révolue dans le contexte actuel d'incertitudes et de changements 

perpétuels : la sylviculture et les forestiers doivent se nourrir de la recherche en 

écologie forestière afin d' élaborer des traitements sylvicoles adaptés à cette nouvelle 

réalité. 

D'autre part, avec des bouleversements climatiques d'une rapidité sans précédent, il 

est loin d'être assuré que les écosystèmes forestiers pourront s' adapter comme ils ont 

pu le faire lors de changements climatiques précédents. Ainsi, bien que la maxime 

« Nature knows best » soit probablement encore vraie, on pourrait rajouter que la 

Nature en sait moins qu' elle en savait. Devant un tel état de fait, les sylviculteurs, qui 
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pratiquent en quelque sorte la science de l'intervention en forêt, pourraient être tentés 

de pousser davantage cet interventionnisme. Or, les quelques pratiques sylvicoles 

étudiées dans ma thèse - le chaulage, le dégagement du hêtre sous-couvert et la coupe 

totale - montrent que les traitements sylvicoles appliqués pour solutionner une 

problématique donnée, peuvent avoir des effets mitigés . Par exemple, le chaulage 

semble très peu intéressant dans la région à l'étude; l'utiliser constitue un mauvais 

investissement. Même si les deux autres traitements ont des effets en général positifs, 

on observe une grande variabilité dans leur efficacité, spécialement dans le cas de la 

coupe totale. En somme, l' interventionnisme sylvicole n' est pas gage de succès, en plus 

d'être coûteux. 

Ainsi, dans un contexte de changement globaux, je propose une que l'on révise notre 

approche par rapport à l'intervention sylvicole et que l'on considère, en particulier, que 

l ' abstention sylvicole est aussi w1e option valable. Je propose que l'on révise 

l 'approche interventionnisme en se basant sur quatre principes (Figure 4.2). D'abord, 

le fait d'intervenir ou non de façon sylvicole devrait être basé sur l'humilité, c' est-à­

dire que l' on reconnaît que dans un contexte d ' incertitude lié aux changements globaux 

(voir chapitre 2), qu'il est impossible de connaître 1' effet exact des traitements 

sylvicoles appliqués. L'adage du meilleur traitement au meilleur endroit au meilleur 

moment ne tient plus; divers traitements peuvent être appliqués face à une même 

situation, dont l'abstention. On a vu par exemple au chapitre 1, que 1 ' absence de récolte 

marchande, couplée à une élimination des gaules de hêtre, était ce qui avait de plus 

bénéfique pour la régénération de 1 ' érable à sucre. 

Le deuxième principe est celui de la flexibilité qui reconnaît que les sylviculteurs 

seront de plus en plus confrontés à des situations qui leur étaient inconnues : ils 

n'auront vraisemblablement ni les moyens ni les connaissances pour appliquer les 

correctifs pour atteindre les objectifs qu ' ils s' étaient fixés (i.e. en rendement ou en 
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composition en essences). Devant une telle situation, le sylviculteur ne doit pas tenter, 

à tout prix, de rectifier une situation au préalable non-désirée, mais plutôt tenter de tirer 

bénéfice de la situation qui se présente. Encore une fois, l' abstention sylvicole demeure 

une option. L'humilité et la flexibilité, utilisées conjointement, mèneront à une plus 

grande complexité (Messier et al , 2013). 

Le troisième principe est celui de l'acquisition de connaissances . D'une part, par ce 

principe, le statu quo sylvicole est remis en question. Ainsi, par exemple, les coupes de 

jardinage, tel qu 'utilisées dans les érablières du Québec, favorisent très souvent le 

hêtre. Cette pratique sylvicole devrait être revue et l' aménagement équienne envisagé 

(chapitres 1 et 3). D'autre part, il existe une tendance dans Je domaine forestier à croire 

qu'il est plus important d' agir que de comprendre. En ayant une meilleure 

compréhension des changements dans le dynamisme des écosystèmes (ex. : chapitre 

2), on sera plus à même d' identifier des pratiques sylvicoles adaptées, mais surtout 

d' éviter de faire des actions qui risquent d' aggraver certaines situations. Si une partie 

des ressources destinées auparavant à l'intervention sylvicole est plutôt destinée à 

1' acquisition connaissance (et au monitoring), on encourage indirectement l' abstention 

sylvicole. On pourrait résumer ce principe par : « faire moins mais mieux ». 

Les changements globaux placeront les sylviculteurs devant toutes sortes de défis et 

surprises. Il sera de toute évidence impossible économiquement d' intervenir partout. 

Le quatrième principe, la catégorisation, vise à classifier les écosystèmes d'un 

territoire (un peu comme dans la Triade) en fonction de l'intensité des problématiques 

d'adaptation aux changements climatiques en 3 catégories : a) écosystèmes qui ne 

demandent pas d' intervention particulière (ex. : écosystèmes pour lesquels on 

n'observe pas ou peu de problématiques liées aux changements globaux) b) 

écosystèmes sous surveillance (l ' érablière à hêtre pourrait être un exemple) et c) 

écosystèmes fortement atteint nécessitant une intervention pour maintenir les fonctions 
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désirées (ex. : peuplements de frênes). En confrontant cette catégorisation avec 

l' importance des écosystèmes (en termes de superificie et de biens et services offerts) 

sur le terri toi re, l' aménagiste sera plus à même d' identifier les écosystèmes prioritaires 

sur lesquels intervenir. 

Je crois que ces principes, utilisés conjointement, peuvent aider les aménagistes et les 

sylviculteurs à mesurer leur niveau d' intervention dans leur désir de promouvoir 

l'adaptation des forêts aux changements climatiques. Je crois aussi que l'étude de cette 

mesure de l' intervention humaine dans les écocsystèmes face aux changements 

globaux constitue une avenue de recherche à la fois importante pour la société et 

prometteuse du point de vue scientifique. Cette avenue de recherche, que l'on pourrait 

nommer« du combien» se distingue de celle du« comment » (ex. Millar et al., 2007; 

West et al., 2009) et en est en fait la suite logique. 
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Figure 4.1 Liens entre les chapitres de la thèse à travers certains résultats 

importants. 
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L'intervention ou l'abstention sylvicole face aux changements 

globaux régentée selon quatre principes. 
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Figure A.l Study site and treatment units localisation. 
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Statistical results from model comparisons for light, Ca, Mg 

and pH 

Table A.l Model comparison for light, Ca, Mg and pH. 

Parameter Mode! k ~-AICc Weight (ro ) 

co 4 0.00 73% 

Light CO+B 6 2.00 27% 

lntercept 2 20.66 0% 

Ca 
L 3 12 .10 100% 

lntercept 2 0.00 0% 

Mg 
L 3 0.00 99% 

lntercept 2 10.21 1% 

L 3 0.00 75% 
pH 

lntercept 2 2.20 25% 

See Table 1.3 for abbreviations. 
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Modified leaf blower 

45° angle entry 

~ 

Figure A.2 Modified leaf blower. We added a two-entry conduct to the 

original tube of the blower. The lime was incorporated in the 45° angle entry and 

theo blown in the forest stand. 
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Figure A.3 Boxplots of sugar maple (SM) and American beech (AB) sapling 

basal area development according to the various treatments. Au: Autumn; Sp: 

Spring; Su: late-summer. Percentages related to L, B, CO represent the 

cumulative probabilities that the liming, sapling beech elimination, and canopy 

opening treatments be respectively included in the best model (see Methodology 

and Table 1.3 for details). The percentage associated to the intercept is provided 

for comparison. Details of the box plots are included in Figure 1.2. 
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Seedling density evolution 
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Figure A.4 Evolution of seedling density for sugar ma pie (SM) and 

American beech (AB). Only data without liming and AB sapling elimination are 

presented. Au: Autumn; Sp: Spring; Su: late-summer. 
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Growth of dominant sugar maple trees 
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Figure B.l Mean diameter and mean radial growth of 34 dominant sugar 

maple (DBH >44 cm in 2012) trees on a 60-year period. Trees were sampled in the 

same stands than those of Figure 2.1. Radial growth of these sugar maples when 

they had 40 cm in DBH (~ 1972) was about 2.2 mm*year·' , which is much higher 

than the growth of trees of the same size nowadays (Figure 2.1 C). 



Additional dataset for regeneration 

To support our hypothesis that sugar maple regeneration was also affected by the 1986-

1989 event, we used an existing unpublished dataset. This data set has been acquired 

in 2001 from a territory about 100 km south of our main dataset in stands that have 

been strip-cut in 1988-1990. A total of forty sap ling of sugar maple (from 2 to 10 cm 

DBH) were harvested and aged (with a disk taken at the base of the stem) in 10 strip 

cuts. Figure B.2 clearly shows a gap in regeneration between ~ 1978-1986. Our 

hypothesis is that this gap is also a consequence of the stressors that are responsible for 

the sugar maple growth drop in 1986-1989. 
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Figure B.2 Year of establishment for 40 sugar maple sampled in 2001. 

Growth indices for sugar maple and American beech 
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• Sugar maple 

Il American beech 

1990 1995 2000 2005 

Detrended growth indices for sugar maple (orange) and 

American beech (green) for the 1948-2007 period. 
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Correlation between climate variables and growth indices 

Tableau B.l Correlation between climate variables and growth indices for sugar 

maple and American beech. Only months where correlations > 0.33 for the 1950-

1985 period are shown. Correlations were performed using the climate variables from 

both the growth year ( current) and the year prededing the growth ( -1 ). 

Month Climate variable SM AB 
1990-

1950-1985 2005 1950-1985 

May (current) Precipitations -0.381 

May (current) Water balance -0.338 

Mean temperature -0.522 0.024 
June (current) 

Pre ci pitatio ns 0.341 0.216 

-0.410 

Water balance 0.458 0.171 0.374 

July (current) 
Precipitations 0.419 0.052 

Water balance 0.441 0.096 

1990-
2005 

0.189 

0.160 

0.236 

0.248 

Mean temperature 0.346 0.346 

April (-1) Precipitations -0.372 0.028 

Water balance -0.415 0.074 
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Figure B.4 Climate variables from 1948 to 2007. Only the climate variables 

used in Figure 2.2 and Table B.l are shown. 
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Drought years 

Year May June July 
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Figure B.S Daily precipitation du ring the months of May to July for drought 

years between 1948 and 2007 according to the Mont-Laurier weather station. 

The grey line indicates mean daily precipitation over the period. Arrows show 

the periods of drought. Sec methodology for definition of a drought year. 
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Thaw-freeze events 
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Figure B.6 Thaw-freeze events described by thaw length and subsequent 

temperature drop, each point representing a precise date between 1950 and 2007 

for the months of January and February. 
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Table C.l Literature comparing even- and uneven-aged silviculture for herbs 

and shrubs 

Elements Effect lime/spatial Biome Reference 
studied scale 

consideration 

Herb EAS=UAS>UC 4 years after Temperate Elliott and 
diversity treatment/No Deciduous Knoepp 
(Shannon) Forests (2005) 

Vines and EAS=UAS=UC 11 year a ft er Tropical Moist Parrotta et 

herbs treatment/No Forests al. {2002) 
Rich ness 

Vernal herbs EAS=UAS=UC 3-9 years a ft er Temperate Fredericks 
rich ness and treatment/No Deciduous en et al. 
diversity Forests (1999) 

Vascular UC=UAS; 1 year a ft er Boreal Forests Jalon en 
plant cover UC>EAS treatment/No and 

Van ha-

Maja maa 
(2001) 

Spring herb EAS=UAS=UC 10 years for Temperate Kern et al. 
rich ness UAS; Deciduous (2006), 

Forests 
Summer herb 27 years for 

rich ness EAS/No 

Shrub UAS>EAS=UC Undefined/No Mediterranean Torras and 
Rich ness Forests Saura 

(2008) 

Understory EAS=UAS - 12 years after Temperate James 
species treatment/Yes Evergreen Forests {2012) 

rich ness 
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Underst ory EAS=UAS Undefined/No Temperate Lenoir et 

species Deciduous al. (2010) 

rich ness Forests 

Shrub UAS>EAS Various Mediterranean Alberti et 

diversity pole stands, development Forests al. (2013) 

UAS=EAS stages used for 

mature EAS/No 
stands 

Herb layer 
diversity EAS=UAS 

Diversity of EAS>UAS EAS from 2 t o 50 Tempe rate Decocq et 

functionnal years/No Deciduous al. (2013) 

types Forests 

Abundance EAS and UAS ~ 17 years after Temperate Powers 

of an invasive changed with treatment/Yes Deciduous and Nagel 

plant de er and Forests (2008) 

earthworm 
densities 

Understory UAS>EAS=UC Va rious Temperate Duguid 

plant development forests in general and 

diversity stages used for Ashton 

EAS/No (2013) 

Understory UC>EAS=UAS Various Boreal Forests Haeussler 

plant richness development et al. 

stages used for (2007) 

EAS or UAS 
EAS/No 

Understory alone may 

plant le ad a 

composit ion composition 
divergent 
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Table C.2 

Elements 
studied 

Dawn woody 
debris and 
standing 
dead trees 

Snags basal 
a rea 

Dawn woody 
debris 

Vertical 
diversity 

Snags density 

Snag volume 

Dawn woody 
debris 

Indices of 
compositiona 
1 and 
structural 
change 

Cavity tree 
density 
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Literature comparing even- and uneven-aged silviculture for 

structural elements 

Effect Time/spatial Biome Reference 
scale 
consideration 

UC>UAS>EAS 1-3 years/Yes Boreal Forests Atlegrim 
and 
Sjoberg 
(2004) 

UC>EAS=UAS ~ 10 years after Tempe rate Dayan et 
treatment/Yes Deciduous al. (2005) 

Forests 

EAS=UAS>UC 

UC>UAS>EAS 

EAS>UC>UAS Undefined/No Mediterranean Torras and 
Forests Saura 

(2008) 

EAS>UAS Various Temperate Jenkins 
ages/No Deciduous and 

UAS>EAS Forests Webster 
(2004) 

UAS>EAS 1500-year Temperate Rüger et 
span/Yes Deciduous al. (2007) 

Forests 

UC>UAS>EAS Simulation Temperate Fan et al. 
study/Yes Grasslands, (2004) 
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Savannas & 
Shrublands 

Horizontal EAS or UAS Various Boreal Forests Haeussler 

and vertical alone may lead development et al. 

diversity a composition stages used for (2007) 

divergent from EAS/Yes 
natural 
disturbances 



Table C.3 

Elements 
studied 

Bryophytes 
caver 

Ectomycorrhi 
zal fungi 

rich ness 

Fungal 
diversity 

Microbial 
biomass and 
communities 

Microbial 
communities 
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Literature comparing even- and uneven-aged silviculture for 

mycorhizae, lichens, bryophytes, fungi and bacteries 

Effect Time/spatial Biome Reference 

scale 
consideration 

UC>UAS>EAS 1 year a ft er Boreal Forests Jalonen 
treatment/No and 

Van ha-

Maja maa 
(2001) 

UC>UAS>EAS 16 years for EAS; Temperate Kropp and 

10 years for Evergreen Forests Albee 

thinning/No (1996) 

EAS=UAS=UC 65-70 years for Temperate Lindner et 
EAS and at least Deciduous al. (2006) 

4 years sin ce Forests 

harvesting for 

UAS/Yes 

EAS=UAS=UC 5 years a ft er Boreal Forests Han nam 

harvest/No et al. 
(2006) 

EAS=UAS=UC 46 years for EAS Deserts & X eric Chatterjee 
and 12 years Shrublands et al. 
since harvesting (2008) 

for UAS/No 



Table C.4 

Elements 

studied 

Sm ali 
mammals 
populations 

Sm ali 
mammals 
populations 

Small redents 
populations 

Populations 

of 
Peromyscus 

spp. 

Rab bit 
populations 

Flying 
squirrel 
populations 

Species 
rich ness 
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Literature comparing even- and uneven-aged silviculture for 

ma mm ais 

Effect Ti me/spatial Biome Reference 
scale 
consideration 

Effets of EAS and EAS: 0-20 Biomes of North Zwolak 
UAS are species- years/No America (2009) 

specifie 

EAS=UAS=UC for 1 to 4 years Temperate Klenner 
most species a ft er Evergreen Forests and 

treatment/N Sullivan 
0 (2009) 

Effets of EAS and 1-2 years Tempe rate Kang et al. 
UAS are species- a ft er Deciduous (2013) 
specifie treatment/N Forests 

0 

EAS=UAS>UC 4-7 years/No Temperate Fantz and 
Deciduous Renken 
Forests (2013) 

UC> =UAS= EAS Various Temperate Thornton 
(< 15 years); stands ages Evergreen Forests et al. 

for EAS/Yes (2012) 
EAS (15-40 
years)> UAS=UC 

UC>EAS=UAS Not N.A. Holloway 
mentionned/ and Smith 
No (2011) 

EAS=UAS>UC 2-3 years Boreal Forests Le Blanc et 
a ft er al. (2010) 
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Table C.S Literature comparing even- and uneven-aged silviculture for birds 

Elements Effect Ti me/spatial Biome Reference 

studied scale 

consideration 

Mature UC>EAS=UAS 14-years Temperate Morris et 

forest species monitoring Deciduous al. {2013} 

populations a ft er Forests 

treatment/Yes 
Early- EAS>UAS=UC 

successional 

species 
populations 

Bi rd species Effets of EAS ~ 10 years after Temperate Doyon et 

populations and UAS are treatment/Yes Deciduous al. {2005) 

species- Forests 

specifie 

Population Forest-interior 14-years Temperate Becker et 

nesting and interior- monitoring Deciduous al. {2011} 

edge guilds: a ft er Forests 

UC>UAS>EAS treatment/Yes 

Early-

successional 

species: 

EAS>UAS>UC 

Abundance UAS>EAS {old) Studies various Temperate Th ill and 

and rich ness stand age Deciduous Koerth 

of breeding EAS development Forests {2005) 

birds {young)>EAS for EAS/Yes 



111 

Early- EAS>UAS 12-years Tempe rate Perry and 
succession generally monitoring Deciduous Th ill 

species a ft er Forests (2013) 

treatment/Yes 

Migratory EAS>UAS 6 to 11 Tempe rate Alterman 
early- years/Yes Deciduous et al. 
succession Forests (2013) 

species 

Bi rd species EAS>UAS Various stands Tempe rate du Bus de 
rich ness ages for Deciduous Warnaffe 

EAS/Yes Forests and 
Deconchat 

(2008) 

Cerulean EAS>UAS 1-2 years after Temperate Kaminski 
warbler treatment/No Deciduous and Islam 
populations Forests (2013) 

Species EAS-UAS>UC 2-3 years after Boreal Forests Le Blanc et 
rich ness treatment/Yes al. (2010) 

Effets of EAS 

Birds and UAS are 

populations species-

specifie 



112 

Table C.6 Literature comparing even- and uneven-aged silviculture for herps 

Elements Effect Time/spatia Biome Reference 

studied 1 scale 

considerati 

on 

Sala mander UC>UAS>EAS Recovery North Tilghman 

abundance with ti me/ America et al. 
No (2012) 

red-backed UC>UAS>EAS 6-7 years Temperate Hocking et 

salamanders a ft er Deciduous al. (2013) 

abundance treatment/ Forests 

No 

Sala mander UC>UAS>EAS 13 yrs after Temperate Homyack 

abundance treatment/ Deciduous and Ha as 

Y es Forests (2009) 

Amphibians UAS>EAS 3-4 years Temperate Renken et 

a ft er Deciduous al. (2004) 
Reptiles Sp-specific treatment/ Forests 

Y es 

Amphibians UC>UAS>EAS 6 years after Temperate Popescu et 

specialist sp treatment/ Deciduous al. (2012), 

No Forests 
Amphibians 
generalist sp EAS = UAS = UC 

Salamanders UC>EAS 2-3 Temperate Todd et al. 

survival years/No Deciduous (2014) 

Forests / 
Juvenile survival 



11 3 

UAS=UC Mediterran 
ean Forests 

Amphibians EAS >UAS 4 years after Temperate Semlitsch 

oviposition and treatment/ Evergreen et al. 

larval stage No Forests (2009) 

EAS > UAS 
/Temperate 

Amphibians Deciduous 
juvenile and Forests 
adult stages 



Table C.7 

Elements 

studied 

Ants, ground 

beetles and 

spiders 
communities 

Dung beetle 

rich ness and 

diversity 

Sail mites 

rich ness 

diversity and 

composition 

Gound beetle 

community 

Nematodes 
abundance 

Nematodes 
diversity 
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Literature comparing even- and uneven-aged silviculture for 

invertebrates 

Effect Time/spatia Biome Reference 

1 scale 

considerati 

on 

EAS=UAS=UC 5-20 Temperate Johnston 

years/No Deciduous and 

Forests Hal berton 
(2009) 

EAS=UAS=UC 7 years after Tempe rate Masfs and 

t reatment/ Deciduous Marquis 

Y es Forests (2009) 

EAS=UAS=UC 17 years Boreal Forests Déchêne 

a ft er and 

treatment/ Buddle 

No {2009) 

EAS=UAS=UC Not Boreal Forests Atlegrim 

mentionned et al 
(1997) 

UC=UAS>EAS 6-7 months Temperate Panesar et 

a ft er Evergreen Forests al. (2005) 

harvest ing/ 
No 

UC=UAS=EAS 
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Ca rab id EAS>UC=UAS EAS Temperate du Bus 

beetles represented Deciduous dewarnaff 

rich ness by various Forests e et 

developme Lebrun 
Ca rab id nt (2004) 
beetles rare stages/Y es 
species UC>EAS=UAS 

Grou nd UC=UAS=EAS EAS : ~ 70 Temperate Latty et al. 

beetles years sin ce Deciduous (2006) 

treatment Forests 

UAS: 7 

years sin ce 

last 

treatment/ 

Y es 

Lepidoptera UC>EAS>UAS 2 years after Temperate Summervil 

species treatment/ Deciduous le (2011) 

Y es Forests 

Herbivorous EAS>UAS for 7 years after Temperate Forkner et 

species white oak treatment/ Deciduous al. (2006) 

richnesss Y es Forests 
EAS=UAS for black 

oak 

Grou nd UC>UAS>EAM 3 years after Boreal forests Graham-

beetles treatment Sauvé et 

al. 2013 



Table C.8 

Elements 
studied 

Soil surface 

C02 efflux 

Soil surface 
C02 efflux 

Soil C02 

efflux 

An nuai c 
assimilation 

rate 

Total amount 
of carbon 

Total C pool 

11 6 

Literature comparing even- and uneven-aged silviculture for 

respiration and carbon sequestration 

Effect Time/spatia Biome Reference 
1 scale 
considerati 
on 

UC=EAS>UAS 1 year after Boreal Forests La porte et 
treatment/ al. (2003) 

No 

UC>EAS=UAS 17 months Temperate Messina 
a ft er Deciduous and 
treatment/ Forests Schoenholtz 
No (1997) 

EAS>UAS>UC 8 years after Temperate Li et al. 
treatment/ Deciduous (2012) 
No Forests 

UC>UAS>EAS 5 years after Boreal Forests Lee et al. 
treatment/ (2002) 

No 

UC=UAS>EAS 13 years Temperate Li et al. 
a ft er Deciduous (2007) 
treatment/ Forests 
No 

UC>EAS=UAS Various Deserts & Xeric Chatterjee 
stand ages Shrublands et al. (2009) 
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Carbon UAS>EAS Whole Boreal Forests Pukkala et 
seq uestratio stand al. (2011) 

n revolution/ 

Y es 

Carbon UC=EAS>UAS Wh ole Temperate Moore et al. 

sequestratio stand Deciduous (2012) 

n revolution/ Forests 

Y es 

Carbon EAS>UAS 80-year Boreal Forests Nil sen and 

sequestratio period/No Strand 

n (2013) 
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Table C.9 Literature comparing even- and uneven-aged silviculture for soil 

Elements Effect 
studied 

Soil density, EAS=UAS=UC 
pH, C, N, Ca, 
Mg, K, CEC 

Organic EAS=UAS=UC 
matter, total 
nitrogen, soil 
density 

Soil density EAS=UAS=UC 
and porosity, 
water 
nutrient 
concentratio 
ns 

Light soil EAS=UAS 
disturbances 

Heavy soil 

disturbances 

UAS>EAS 

Soil water Strong 
nitrates and negative 
calcium effects of 
concentratio management 
n intensity 

water and nutrients 

Ti me/spatial Biome Reference 
scale 
consideration 

4 years a ft er Temperate Elliott and 
treatment/No Deciduous Knoepp 

Forests (2005) 

46 years for EAS Deserts & Xeric Chatterjee 
and 12 years Shrublands et al. 
since harvesting (2008) 
for UAS/No 

17 months a ft er Tem perate 
treatment/No 

lmmediately 

a ft er 
harvesting/No 

3-year 
monitoring/No 

Deciduous 

Forests 

Mediterranean 
Forests 

Temperate 
Deciduous 
Forests 

Messina 
and 
Schoenhol 
tz (1997) 

Spinelli et 
al. (2010) 

Siemion et 
al. (2011) 
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