In eastern Canada, boreal forests are locally experiencing a shift between two alternative stable states, productive closed-canopy feather moss (Pleurozium schreberi (Brid.) Mitt.) forests to low-productivity open lichen (Cladonia spp.) woodlands. While this shift has important consequences for ecosystem structure and productivity, little is known about the changes occurring in the diversity and composition of the soil microbial community which may be driven by this process. We evaluated the effects of 10-year moss transplantation on soil microbial communities in an open-lichen woodland. Treatments included: 1) removal of the lichen cover, 2) removal of the lichen cover followed by transplantation of a feather moss cover, 3) a control with the lichen cover kept in place (lichen control), and 4) a natural forest site with a feather moss cover (moss control). We found that changing the forest ground cover has a significant impact on the diversity, composition and function of soil microbial communities. Fungal alpha diversity was more sensitive to changes in lichen and moss cover, compared to bacterial diversity. Soil microbial community composition showed significant differences among all forest ground covers, but with greater similarities between the moss transplantation and control moss treatments. More importantly, changes of forest ground cover significantly affected the structure of microbial communities and fungal functional groups. Moss transplantation significantly increased the relative abundance of the organic nitrogen-scavenging fungal genus, Piloderma. Furthermore, moss transplantation significantly increased the overall relative abundance of ectomycorrhizal fungi and decreased the proportion of ericoid mycorrhizal fungi. Soil moisture and temperature were the main environmental variables associated to the shift in microbial community composition. Our study points out that moss transplantation in open-canopy lichen woodlands contributes to regulate and modify the composition, structure, and function of the soil microbial communities with potential implications for explaining the changes in ecosystem processes associated with these two forest ecosystems.