Sylvie Gauthier, Timo Kuuluvainen, Ellen E. MacDonald, Ekaterina Shorohova, Anatoly Shvidenko, Annie Claude Bélisle, Marie-André Vaillancourt, Alain Leduc, Guillaume Grosbois, Yves Bergeron, Hubert Morin, Miguel Montoro Girona. Ecosystem Management of the Boreal Forest in the Era of Global Change 2023. In: Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y. (eds) Boreal Forests in the Face of Climate Change. Advances in Global Change Research, vol 74. Springer, Cham. 3
DOI : 10.1007/978-3-031-15988-6_1
Tuomas Aakala, Cécile C. Remy, Dominique Arseneault, Hubert Morin, Martin-Philippe Girardin, Fabio Gennaretti, Lionel Navarro, Niina Kuosmanen, Adam A. Ali, Étienne Boucher, Normunds Stivrins, Heikki Seppä, Yves Bergeron, Miguel Montoro Girona. Millennial-Scale Disturbance History of the Boreal Zone 2023. In: Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y. (eds) Boreal Forests in the Face of Climate Change. Advances in Global Change Research, vol 74. Springer, Cham. 53
DOI : 10.1007/978-3-031-15988-6_2
Long-term disturbance histories, reconstructed using diverse paleoecological tools, provide high-quality information about pre-observational periods. These data offer a portrait of past environmental variability for understanding the long-term patterns in climate and disturbance regimes and the forest ecosystem response to these changes. Paleoenvironmental records also provide a longer-term context against which current anthropogenic-related environmental changes can be evaluated. Records of the long-term interactions between disturbances, vegetation, and climate help guide forest management practices that aim to mirror “natural” disturbance regimes. In this chapter, we outline how paleoecologists obtain these long-term data sets and extract paleoenvironmental information from a range of sources. We demonstrate how the reconstruction of key disturbances in the boreal forest, such as fire and insect outbreaks, provides critical long-term views of disturbance-climate-vegetation interactions. Recent developments of novel proxies are highlighted to illustrate advances in reconstructing millennial-scale disturbance-related dynamics and how this new information benefits the sustainable management of boreal forests in a rapidly changing climate.
Miguel Montoro Girona, Hubert Morin, Sylvie Gauthier, Yves Bergeron. Boreal Forests in the Face of Climate Change:Sustainable Management 2023. Earth and Environmental Science, Earth and Environmental Science (R0), Springer Cham. XLIX, 837
DOI : 10.1007/978-3-031-15988-6
Anoj Subedi, Philippe Marchand, Yves Bergeron, Hubert Morin, Miguel Montoro Girona. Climatic conditions modulate the effect of spruce budworm outbreaks on black spruce growth 2023. Agric. For. Meteorol. 109548
DOI : 10.1016/j.agrformet.2023.109548
Current ecological models predict profound climate change-related effects on the natural disturbance regimes of forests. Spruce budworm (Choristoneura fumiferana) (SBW) is the principal insect defoliator in eastern North America, and SBW outbreaks have a major impact on the structure and function of the Canadian boreal forest, as defoliation leads to decreased tree growth, increased mortality, and lower forest productivity. SBW outbreaks have become more severe over the last century with the changing climate; however, little is known about how climate fluctuations affect the growth of SBW host species during the outbreak period. Here we evaluate how climate and outbreak severity combined to affect black spruce (Picea mariana) growth during the SBW outbreak that occurred between 1968–1988 and 2006–2017. We compiled dendrochronological series (2271 trees), outbreak severity (estimated by observed aerial defoliation), and climate data for 164 sites in Québec, Canada. We used a linear mixed effect model to determine the impacts of climatic parameters, cumulative defoliation (of the previous five years), and their coupled effect on basal area growth. At maximum outbreak severity, basal area growth of black spruce was reduced by 14%–18% over five years. This outbreak growth response was affected by climate: warmer previous summer minimum temperatures and a higher previous summer climate moisture index further decreased growth by 11% and 4%, respectively. In contrast, a preceding year's warmer spring minimum temperatures (9%) and summer maximum temperatures (7%) attenuated the negative SBW effect. This study adds knowledge to our landscape-level understanding of combined insect–climate effects and helps predictions of future SBW-related damage to forest stands to bolster sustainable forest management. We also recommend that projections of boreal forest ecosystems include several classes of SBW defoliation and multiple climatic scenarios in future simulations.
Valentina Buttò, Philippe Rozenberg, Annie Deslauriers, Sergio Rossi, Hubert Morin. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. 2022. New Phytologist 230(3):957-971
DOI : 10.1111/nph.17223
Wood density is the product of carbon allocation for structural growth and reflects the trade-off between mechanical support and water conductivity. We tested a conceptual framework based on the assumption that micro-density depends on direct and indirect relationships with endogenous and exogenous factors. The dynamics of wood formation, including timings and rates of cell division, cell enlargement, and secondary wall deposition, were assessed from microcores collected weekly between 2002 and 2016 from five black spruce stands located along a latitudinal gradient in Quebec, Canada. Cell anatomy and micro-density were recorded by anatomical analyses and X-ray measurements. Our structural equation model explained 80% of micro-density variation within the tree-ring with direct effects of wall thickness (σ = 0.61), cell diameter (σ = −0.51), and photoperiod (σ = −0.26). Wood formation dynamics had an indirect effect on micro-density. Micro-density increased under longer periods of cell-wall deposition and shorter durations of enlargement. Our results fill a critical gap in understanding the relationships underlying micro-density variation in conifers. We demonstrated that short-term responses to environmental variations could be overridden by plastic responses that modulate cell differentiation. Our results point to wood formation dynamics as a reliable predictor of carbon allocation in trees. © 2021 The Authors New Phytologist
Siddhartha Khare, Annie Deslauriers, Hubert Morin, Hooman Latifi, Sergio Rossi. Comparing Time-Lapse PhenoCams with Satellite Observations across the Boreal Forest of Quebec, Canada. 2022. Remote sensing 14(1):100
DOI : 10.3390/rs14010100
Intercomparison of satellite-derived vegetation phenology is scarce in remote locations because of the limited coverage area and low temporal resolution of field observations. By their reliable near-ground observations and high-frequency data collection, PhenoCams can be a robust tool for intercomparison of land surface phenology derived from satellites. This study aims to investigate the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology by comparing fortnightly the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) extracted using the Google Earth Engine (GEE) platform with the daily PhenoCam-based green chromatic coordinate (GCC) index. Data were collected from 2016 to 2019 by PhenoCams installed in six mature stands along a latitudinal gradient of the boreal forests of Quebec, Canada. All time series were fitted by double-logistic functions, and the estimated parameters were compared between NDVI, EVI, and GCC. The onset of GCC occurred in the second week of May, whereas the ending of GCC occurred in the last week of September. We demonstrated that GCC was more correlated with EVI (R2 from 0.66 to 0.85) than NDVI (R2 from 0.52 to 0.68). In addition, the onset and ending of phenology were shown to differ by 3.5 and 5.4 days between EVI and GCC, respectively. Larger differences were detected between NDVI and GCC, 17.05 and 26.89 days for the onset and ending, respectively. EVI showed better estimations of the phenological dates than NDVI. This better performance is explained by the higher spectral sensitivity of EVI for multiple canopy leaf layers due to the presence of an additional blue band and an optimized soil factor value. Our study demonstrates that the phenological observations derived from PhenoCam are comparable with the EVI index. We conclude that EVI is more suitable than NDVI to assess phenology in evergreen species of the northern boreal region, where PhenoCam data are not available. The EVI index could be used as a reliable proxy of GCC for monitoring evergreen species phenology in areas with reduced access, or where repeated data collection from remote areas are logistically difficult due to the extreme weather.
Yaling Zhang, Jian-Guo Huang, Minhuang Wang, Xiaohan Yu, Annie Deslauriers, Patrick Fonti, Eryuan Liang, Harri Mäkinen, Walter Oberhuber, Cyrille B. K. Rathgeber, Roberto Tognetti, Václav Treml, Bao Yang, Lihong Zhai, Jiao-Lin Zhang, Serena Antonucci, Yves Bergeron, Jesus Julio Camarero, Filipe Campelo, Katarina Cufar, Henri E. Cuny, Martin De Luis, Marek Fajstavr, Alessio Giovannelli, Jožica Gricar, Andreas Gruber, Vladimír Gryc, Aylin Güney, Tuula Jyske, Jakub Kašpar, Gregory King, Cornelia Krause, Audrey Lemay, Feng Liu, Fabio Lombardi, Edurne Martinez del Castillo, Hubert Morin, Cristina Nabais, Pekka Nöjd, Richard L. Peters, Peter Prislan, Antonio Saracino, Vladimir V. Shishov, Irene Swidrak, Hanuš Vavrcík, Joana Vieira, Qiao Zeng, Yu Liu, Sergio Rossi. A critical thermal transition driving spring phenology of
Northern Hemisphere conifers. 2022. Global Change Biology 29(6):1606-1617
DOI : 10.1111/gcb.16543
Despite growing interest in predicting plant phenological shifts,advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (?3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°?66°?N). Along the MAT gradient,we identified a threshold temperature (using segmented regression) of 4.9?±?1.1°C,above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches,with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models),respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.
Janie Lavoie, Miguel Montoro Girona, Hubert Morin. Les impacts du type de coupe forestière sur la tordeuse des bougeons de l'épinette. 2022. Le Couvert Boréal p.33
Raphaël Chavardes, Lorena Balducci, Yves Bergeron, Véronique Poirier, Pierre Grondin, Hubert Morin, Fabio Gennaretti. Greater tree species diversity and lower intraspecific
competition attenuate impacts from temperature
increases and insect epidemics in boreal forests of
western Quebec, Canada. 2022. Can. J. For. Res. 53(12):48-59
DOI : 10.1139/cjfr-2022-0114
We investigated how the surrounding environment influences the growth of dominant trees and their responses to temperature and insect epidemics in boreal forests of eastern Canada. We focused on 82 black spruce and jack pine focal trees in stands spanning a double gradient of species diversity and soil texture within a 36 km2 area of western Québec. For these trees, we compared their diameter at breast height, growth rates, temperature-growth relations, and growth during insect defoliator epidemics. We used linear models to study how surrounding tree attributes and soil properties affected the growth of focal trees. Models showed that tree growth responses and responses to temperature and insect epidemics were generally negative with higher intraspecific competition and positive with greater tree species diversity. Growth of both species benefitted from lower soil sand content. Our research offers novel insights on the potential role of the surrounding environment, notably tree competition and species diversity, in mitigating the vulnerability of eastern Canada’s boreal trees to anthropogenic climate change and insect epidemics.
Valentina Buttò, Siddhartha Khare, Guillaume Drolet, Jean-Daniel Sylvain, Fabio Gennaretti, Annie Deslauriers, Hubert Morin, Sergio Rossi. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce 2021. Global Ecology and Biogeography. 30(8):1657-1670
DOI : 10.1111/geb.13340
In boreal ecosystems, phenological events display seasonal patterns. These patterns allow for the development of tissues during the short time window available for growth in cold climates. Primary and secondary growth, two expensive processes for plants, are supposedly modulated in time to optimize allocation of carbon to bud and woody tissues. We aimed to assess the phenology of primary and secondary meristems, testing their relationship over the closed black spruce stands of the commercially exploited forest region in Quebec, Canada.
Location
Quebec, Canada.
Time period
2002–2016.
Major taxa studied
Gymnospermae.
Methods
We combined weekly scaled field observations with Moderate Resolution Imaging Spectroradiometer (MODIS) time series of the normalized difference vegetation index (NDVI) to extract timings of photosynthesis and meristem growth in five black spruce [Picea mariana (Mill.) B.S.P.] stands located along a latitudinal gradient and to assess their relationship. We then tested empirical models based on geographical position and seasonal temperatures to predict wood phenology (i.e., the onset and ending of earlywood and latewood formation), and compared its spatial patterns with existing predictions of bud phenology for the same study area.
Results
Photosynthesis started at the beginning of May, 3 weeks before bud reactivation and the onset of wood growth. Latewood formation started in mid-July, after shoot elongation was completed. For wood phenology models, the residual standard error ranged from 1 week to 12 days. Growth dynamics spatialized across the boreal forest of Quebec varied with the transition between the subarctic and humid continental climate.
Main conclusions
Shoot elongation and latewood formation were temporally separated, providing evidence of a trade-off in structural carbon allocation between primary and secondary growth in trees. Spatial patterns of wood phenology predicted for the black spruce polygons are consistent with spatial patterns of bud phenology, demonstrating synchronized temporal dynamics of meristems at the regional scale.
Maxence Martin, Junior A. Tremblay, Jacques Ibarzabal, Hubert Morin. An indicator species highlights continuous deadwood supply is a key ecological attribute of boreal old-growth forests. 2021. Ecosphere 12(5):e03507
DOI : 10.1002/ecs2.3507
Abstract Old-growth forests are optimal habitats for many woodpeckers, which are often themselves excellent indicators of deadwood-associated biodiversity. Old-growth forests are, however, heterogeneous ecosystems in terms of structure, composition, and deadwood characteristics, thus implying a varied use of these forests by woodpeckers. In boreal landscapes, old-growth stands are threatened by forest harvesting; however, there is little information in regard to the consequences for biodiversity with the loss of specific types of old-growth forests. This study aimed to assess how the black-backed woodpecker (Picoides arcticus), a biodiversity indicator species associated with old-growth forest attributes, uses different types of old-growth forests for its foraging needs. We identified woodpecker foraging marks in 24 boreal old-growth forest stands in eastern Canada that were dominated by black spruce (Picea mariana), located within the home range of eight black-backed woodpeckers. We identified the various old-growth forest types using a typology based on the structural attributes of old-growth stands. We classified the sampled stands into four old-growth forest types, corresponding to different successional stages (recent or old, relative to the onset of the old-growth stage), composition (pure black spruce or mixed black spruce–balsam fir [Abies balsamea]), and productivity (ongoing paludification or not). The black-backed woodpecker foraged in all types of old-growth forests, but favored dense old-growth forests that were not paludified and that showed a high temporal continuity (i.e., old-growth dynamics probably started more than a century ago). The temporal continuity of the old-growth state allows for the continuous supply of large, slightly decayed snags, the preferred foraging substrates of the black-backed woodpecker. The old-growth forest type most favored by this woodpecker is, however, also the forest type most often targeted first by logging operations. Protecting the biodiversity associated with recent deadwood in managed areas thus requires maintaining a sufficient area and density of dense, old-growth black spruce-dominated forests in managed areas.
Maxence Martin, Hubert Morin, Nicole J. Fenton. Tree-related microhabitats and deadwood dynamics form a diverse and constantly changing mosaic of habitats in boreal old-growth forests 2021. Ecological Indicator 128:107813
DOI : 10.1016/j.ecolind.2021.107813
Tree-related microhabitats (TreM) and deadwood are two forest attributes providing essential resources for biodiversity conservation and ecosystem services. Old-growth forests are generally defined by a high abundance and diversity of TreM and deadwood, but little is known about TreM and deadwood dynamics once the old-growth stage is reached, in particular in the boreal biome. In this context, knowledge on TreM and deadwood dynamics in old-growth forest stands is necessary to better understand how these forests contribute to biodiversity and ecosystem services. The aim of this study is thus to determine how TreM, and deadwood abundance and diversity vary within boreal old-growth forests. To reach this objective, we surveyed TreM and deadwood attributes, as well as structural and abiotic attributes, in 71 boreal old-growth forests situated in Quebec, Canada. We used hierarchical clustering analysis to identify TreM and deadwood abundance and diversity patterns in the studied stands. We identified five clusters of TreM and deadwood characteristics, which corresponded to three stages of old-growth forest succession: canopy break-up (beginning of the old-growth stage), transition old-growth stage (replacement of the first cohort by old-growth cohorts) and true old-growth stage (first cohort all or almost all gone). The peak in TreM richness and diversity was reached at the transition old-growth stage, whereas the peak for deadwood richness and diversity was reached at the true old-growth stage. Overall, true old-growth forests were defined by a combination of moderate to high TreM density and high deadwood volume, but these values significantly varied among stands depending on past secondary disturbances, stand structure and its composition (black spruce [Picea mariana Mill.] dominated vs mixed black spruce – balsam fir [Abies balsamea (L.) Mill.]). These results therefore underscore the importance of considering old-growth forests as dynamic rather than static ecosystems, as the composition of tree- and deadwood-related microhabitats in the same old-growth stand may markedly change over time. At landscape scale, these results also imply that the mosaic of habitats present in old-growth forests can vary greatly from one location to another, highlighting the importance of maintaining a diversity of old-growth forest structure and composition.
Janie Lavoie, Miguel Montoro Girona, Guillaume Grosbois, Hubert Morin. Does the type of silvicultural practice influence spruce budworm defoliation of seedlings? 2021. Ecosphere 12(4):e03506
DOI : 10.1002/ecs2.3506
Spruce budworm (Choristoneura fumiferana (Clem)) is the main defoliator in the boreal forest of North America, and its outbreaks have major ecological and economic consequences and represent a challenge for forest management. Numerous studies have addressed the effects of this defoliator on mature trees, whereas the effects of spruce budworm on regeneration remain elusive. Furthermore, intensive exploitation practices during the last decades have left a large area of the Canadian boreal forest in an early development stage. In this context, it becomes vital to understand those factors affecting the severity of spruce budworm‐related defoliation on regeneration. Here, we determine the defoliation severity of black spruce and balsam fir seedlings in both mature pure black spruce and black spruce–balsam fir stands subjected to two different silvicultural treatments (clear‐cutting and partial cutting). Defoliation intensity varied between stand types, silvicultural treatments, species, and height classes. Seedlings in black spruce–balsam fir stands experienced twice the defoliation of those in pure black spruce stands (black spruce seedlings 10% vs. 23%; balsam fir seedlings 29% vs. 47%, respectively). Harvesting methods also influenced seedling defoliation. Under clear‐cutting, black spruce seedlings (24%) were three times as defoliated as black spruce seedlings in partial cutting stands (8%), whereas balsam fir seedlings in clear‐cutting plots experienced twice the defoliation (42%) of balsam fir seedlings in partial cutting plots (20%). The level of defoliation also increased with seedling height. This study will help silvicultural strategies adapt to the effects of natural disturbance regimes. As the intensity and severity of defoliator outbreaks are expected to increase under climate change, these results will help guide forest management strategies to select harvesting methods that will limit the effects of defoliation on conifer regeneration.
Raphaël Chavardes, Fabio Gennaretti, Xavier Cavard, Pierre Grondin, Hubert Morin, Yves Bergeron. Role of Mixed-Species Stands in Attenuating the Vulnerability of Boreal Forests to Climate Change and Insect Epidemics. 2021. Frontiers in Plant Science 12:658880
DOI : 10.3389/fpls.2021.658880
We investigated whether stand species mixture can attenuate the vulnerability of eastern Canada’s boreal forests to climate change and insect epidemics. For this, we focused on two dominant boreal species, black spruce [Picea mariana (Mill.) BSP] and trembling aspen (Populus tremuloides Michx.), in stands dominated by black spruce or trembling aspen (“pure stands”), and mixed stands (M) composed of both species within a 36 km2 study area in the Nord-du-Québec region. For each species in each stand composition type, we tested climate-growth relations and assessed the impacts on growth by recorded insect epidemics of a black spruce defoliator, the spruce budworm (SBW) [Choristoneura fumiferana (Clem.)], and a trembling aspen defoliator, the forest tent caterpillar (FTC; Malacosoma disstria Hübn.). We implemented linear models in a Bayesian framework to explain baseline and long-term trends in tree growth for each species according to stand composition type and to differentiate the influences of climate and insect epidemics on tree growth. Overall, we found climate vulnerability was lower for black spruce in mixed stands than in pure stands, while trembling aspen was less sensitive to climate than spruce, and aspen did not present differences in responses based on stand mixture. We did not find any reduction of vulnerability for mixed stands to insect epidemics in the host species, but the non-host species in mixed stands could respond positively to epidemics affecting the host species, thus contributing to stabilize ecosystem-scale growth over time. Our findings partially support boreal forest management strategies including stand species mixture to foster forests that are resilient to climate change and insect epidemics.
Maxence Martin, Pierre Grondin, Marie-Claude Lambert, Yves Bergeron, Hubert Morin. Compared to Wildfire, Management Practices Reduced Old-Growth Forest Diversity and Functionality in Primary Boreal Landscapes of Eastern Canada. 2021. Frontiers in forests and global change 4:15
DOI : 10.3389/ffgc.2021.639397
Large primary forest residuals can still be found in boreal landscapes. Their areas are however shrinking rapidly due to anthropogenic activities, in particular industrial-scale forestry. The impacts of logging activities on primary boreal forests may also strongly differ from those of wildfires, the dominant stand-replacing natural disturbance in these forests. Since industrial-scale forestry is driven by economic motives, there is a risk that stands of higher economic value will be primarily harvested, thus threatening habitats, and functions related to these forests. Hence, the objective of this study was to identify the main attributes differentiating burned and logged stands prior to disturbance in boreal forests. The study territory lies in the coniferous and closed-canopy boreal forest in Québec, Canada, where industrial-scale logging and wildfire are the two main stand-replacing disturbances. Based on Québec government inventories of primary forests, we identified 427 transects containing about 5.5 circular field plots/transect that were burned or logged shortly after being surveyed, between 1985 and 2016. Comparative analysis of the main structural and environmental attributes of these transects highlighted the strong divergence in the impact of fire and harvesting on primary boreal forests. Overall, logging activities mainly harvested forests with the highest economic value, while most burned stands were low to moderately productive or recently disturbed. These results raise concerns about the resistance and resilience of remnant primary forests within managed areas, particularly in a context of disturbance amplification due to climate change. Moreover, the majority of the stands studied were old-growth forests, characterized by a high ecological value but also highly threatened by anthropogenic disturbances. A loss in the diversity and functionality of primary forests, and particularly the old-growth forests, therefore adds to the current issues related to these ecosystems. Since 2013, the study area is under ecosystem-based management, which implies that there have been marked changes in forestry practices. Complementary research will be necessary to assess the capacity of ecosystem-based management to address the challenges identified in our study.
Valentina Buttò, Vladimir V. Shishov, Ivan Tychkov, Margarita Popkova, Minhui He, Sergio Rossi, Annie Deslauriers, Hubert Morin. Comparing the Cell Dynamics of Tree-Ring Formation Observed in Microcores and as Predicted by the Vaganov–Shashkin Model. 2020. Frontiers in Plant Science 11:1268
DOI : 10.3389/fpls.2020.01268
New insights into the intra-annual dynamics of tree-ring formation can improve our understanding of tree-growth response to environmental conditions at high-resolution time scales. Obtaining this information requires, however, a weekly monitoring of wood formation, sampling that is extremely time-intensive and scarcely feasible over vast areas. Estimating the timing of cambial and xylem differentiation by modeling thus represents an interesting alternative for obtaining this important information by other means. Temporal dynamics of cambial divisions can be extracted from the daily tree-ring growth rate computed by the Vaganov–Shashkin (VS) simulation model, assuming that cell production is tightly linked to tree-ring growth. Nonetheless, these predictions have yet to be compared with direct observations of wood development, i.e., via microcoring, over a long time span. We tested the performance of the VS model by comparing the observed and predicted timing of wood formation in black spruce [Picea mariana (Mill.)]. We obtained microcores over 15 years at 5 sites along a latitudinal gradient in Quebec (Canada). The measured variables included cell size and the timing of cell production and differentiation. We calibrated the VS model using daily temperature and precipitation recorded by weather stations located on each site. The predicted and observed timing of cambial and enlarging cells were highly correlated (R2 = 0.8); nonetheless, we detected a systematic overestimation in the predicted timing of cambial cells, with predictions delayed by 1–20 days compared with observations. The growth rate of cell diameter was correlated with the predicted growth rate assigned to each cambial cell, confirming that cell diameter developmental dynamics have the potential to be inferred by the tree-ring growth curve of the VS model. Model performances decrease substantially in estimating the end of wood formation. The systematic errors suggest that the actual relationships implemented in the model are unable to explain the phenological events in autumn. The mismatch between the observed and predicted timing of wood formation in black spruce within our study area can be reduced by better adapting the VS model to wet sites, a context for which this model has been rarely used.
Marcin Klisz, Valentina Buttò, Sergio Rossi, Hubert Morin, Szymon Jastrzębowski. Intra-annual stem size variations converge across marginal populations of European beech. 2020. Trees 34(1):255-265
DOI : 10.1007/s00468-019-01915-5
One of the key issues of the distribution of tree species is their ability to track environmental changes. European beech (Fagus sylvatica L.) is a species highly sensitive to extreme climatic events, because of its high phenotypic plasticity. In this study, we aim to determine the variability in stem size between and within marginal beech populations. Marginal populations of beech growing under uniform environmental conditions of provenance trial offer unique opportunity to detect adaptive differentiations driven by natural selection. In this work, we studied stem size variation recorded by automatic band dendrometers in four beech marginal populations growing in a common garden in the south-eastern distribution range of beech in Poland over the period 2016–2018. Strong climatic effects and weak provenance differences in seasonal stem size variation were observed. The provenances exhibited similar climate-related seasonal stem circumference variation. A high within-provenance variation was confirmed. Temperature of spring as well as temperature and precipitation of autumn were detected as key climatic parameters mostly for onset and end of stem size variation. Maximum stem size was mostly affected by the later end of its variation, which positively affected its duration. Climatic distance between beech provenances and provenance trial had a negligible effect on the variability in seasonal stem size variation between provenances. The evidence of weak inter-provenance and high intra-provenance variation in stem size changes observed in the south-eastern distribution range indicates that an individual-based approach could be a suitable strategy, when selecting for phenotypic plasticity.
Valentina Buttò, Annie Deslauriers, Sergio Rossi, Philippe Rozenberg, Vladimir V. Shishov, Hubert Morin. The role of plant hormones in tree-ring formation. 2020. Trees 34(2):315-335
DOI : 10.1007/s00468-019-01940-4
Tree rings are the result of the seasonal activity of the vascular cambium, the secondary meristem of woody angiosperms and gymnosperms. During tree-ring formation, a combination of endogenous and environmental factors affects cambial division, cell differentiation and maturation; this, in turn, affects wood quantity and quality. Among the endogenous factors affecting tree-ring formation, plant hormones are recognized as determinant players in regulating many aspects of the features and fate of each xylem cell. Most of our knowledge regarding the roles of plant hormones on tree-ring formation comes from herbaceous plants, although an increasing interest involves the analysis of the hormonal patterns in tree-species. This paper reviews the state of knowledge of the role of plant hormones during tree-ring formation by focusing on experiments performed on woody species. An overview of the main plant hormones and their main activities during radial tree growth will be followed by discussion of their role in each tree-ring developmental stage and in the overall tree-ring seasonal pattern.
Shaokang Zhang, Valentina Buttò, Siddhartha Khare, Annie Deslauriers, Hubert Morin, Hai Ren, Jian-Guo Huang, Sergio Rossi. Calibrating PhenoCam Data with Phenological Observations of a Black Spruce Stand. 2020. Can. J. Remote Sensing 46(2):154-165
DOI : 10.1080/07038992.2020.1761251
Bud and leaf development are important phenological events and help in defining the growing period of trees. Canopy greenness derived from PhenoCam has been used to investigate leaf phenology. Questions remain on how much the continuous records of canopy greenness represent bud developmental phases, and how growing period boundaries are related to canopy greenness and bud phenology. In this study, we compared bud phenology of black spruce [Picea mariana (Mill.) B.S.P] during 2015, 2017 and 2018 with the canopy greenness, represented by Green Chromatic Coordinate (GCC), derived from PhenoCam images of a boreal stand in Quebec, Canada. Logit models were applied to estimate the probability of observing sequential phenological phases of bud burst and bud set along with GCC. GCC showed a bell-shaped pattern, with a slow increase in spring, a peak in summer and a gradual decrease in autumn. The start and end of budburst, and bud set, occurred when GCC reached 72% and 92% (spring), and 94% (autumn) of its maximum amplitude, respectively. These GCC values are reliable thresholds indicating the growing period boundaries. Our study builds a bridge between phenological observations and automatic near-surface remote sensing, providing a statistically sound protocol for calibrating PhenoCam with field observations.
Yves Bergeron, Filipe Campelo, Qianqian Ma, Yaling Zhang, Patrick Fonti, Annie Deslauriers, Eryuan Liang, Jian-Guo Huang, Harri Mäkinen, Walter Oberhuber, Cyrille B.K. Rathgeber, Roberto Tognetti, Václav Treml, Bao Yang, Lihong Zhai, Jiao-Lin Zhang, Serena Antonucci, J. Julio Camarero, Katarina Cufar, Martin De Luis, Alessio Giovannelli, Henri E. Cuny, Jožica Gricar, Andreas Gruber, Vladimír Gryc, Aylin Güney, Xiali Guo, Wei Huang, Tuula Jyske, Jakub Kašpar, Gregory King, Cornelia Krause, Audrey Lemay, Feng Liu, Fabio Lombardi, Edurne Martinez del Castillo, Hubert Morin, Cristina Nabais, Pekka Nöjd, Richard L. Peters, Peter Prislan, Antonio Saracino, Irene Swidrak, Hanuš Vavrcík, Joana Vieira, Biyun Yu, Shaokang Zhang, Qiao Zeng, Emanuele Ziaco, Sergio Rossi. REPLY TO ELMENDORF AND ETTINGER:
Photoperiodplaysadominantandirreplaceablerole
in triggering secondary growth resumption 2020. PNAS 117(52) 32865-32867
DOI : 10.1073/pnas.2019931117
Annie Deslauriers, Lorena Balducci, Daniele De Barba, Yves Bergeron, Sergio Rossi, Hubert Morin, Daniel Houle. Influence of soil warming and N-addition on sap flux density
and stem radius variation in boreal stands in Quebec, Canada. 2020. Ecohydrology e2261
DOI : 10.1002/eco.2261
Climate change is projected to intensify the global hydrological cycle and increase temperatures. Excess N deposition could limit plant productivity because of a lack of plant–soil system efficiency with reduced water availability. However, the effects of soil warming and N?addition on tree water transport and water use remain poorly understood. This study aimed to quantify the effects of soil warming and N?addition associated with meteorological variables on the sap flux density and stem radius variation in black spruce (Picea mariana [Mill.] B.S.P.). From 2008 to 2014, we conducted a long?term experiment on mature trees growing in two stands (Bernatchez [BER] and Simoncouche [SIM]) at different latitudes to evaluate the effect of soil warming (H) and N?addition. During 2014, we investigated soil and plant water status between May and August, sap flux density from July to August and stem radius variation over the whole year. At the colder, northern site (BER), we detected a significant increase in sap flux density with the H?treatment, whereas no effect was observed at the warmer, southern site (SIM). At BER, diurnal sap flux density in H × N?addition treatment showed a significant effect in the afternoon near the peak of day compared with the other treatments. We found no significant effects of independent single or combined factors on soil and plant water status and stem radius variation at either site. Under climate change, black spruce at more northern sites could have a better water use and storage for wood productivity than those at more southern sites.
Maxence Martin, Nicole J. Fenton, Hubert Morin. Boreal old-growth forest structural diversity challenges aerial photographic survey accuracy. 2020. Can. J. For. Res. 50:155-169
DOI : 10.1139/cjfr-2019-0177
L’érosion des superficies des vieilles forêts boréales est actuellement l’un des enjeux majeurs de l’aménagement forestier; cependant, la résolution de ce problème nécessite des inventaires précises. Ainsi, l’objectif de cette étude était de déterminer si les précédents inventaires forestiers aériens identifiaient correctement les vieilles forêts dans les paysages boréaux du Québec, au Canada. Nous avons comparé les stades de succession (forêt équienne ou vieille forêt) de deux inventaires aériens réalisés en 1968 (inventaire aérien préindustriel) et en 2007 (inventaire aérien moderne) sur un territoire de 2200 km2. Nous avons aussi comparé les résultats de l’inventaire aérien moderne avec ceux obtenus à partir de 74 placettes de terrain échantillonnées entre 2014 et 2016. Les deux inventaires aériens étaient très incohérents : 80,8 % des peuplements non-perturbés identifiés comme « vieilles forêts » par l’inventaire préindustriel étaient classés comme « équiennes » par l’inventaire moderne et 60 % des placettes de terrain identifiées comme « vieilles forêts » étaient aussi classées « équiennes » par l’inventaire aérien moderne. Le manque d’attributs de vieilles forêts évidents ainsi que l’utilisation de critères inadaptés (c.-à-d. nécessitant une forte complexité verticale et d’importants changements de composition en espèces arborescentes durant la succession forestière) étaient les principaux éléments expliquant ces erreurs. Il est ainsi possible que la majorité des vieilles forêts boréales du Québec ne soient pas identifiées comme telles, limitant l’efficacité des stratégies de gestion durable.
Maxence Martin, Yan Boucher, Philippe Marchand, Hubert Morin, Nicole J. Fenton. Forest management has reduced the structural diversity of residual boreal old-growth forest landscapes in Eastern Canada. 2020. For. Ecol. Manage. 458:117765
DOI : 10.1016/j.foreco.2019.117765
The impact of traditional even-aged forest management on landscape age structure, tree composition, and connectivity has been well documented. Very little, however, is known about the impact on stand structural diversity. This study aims to compare the structural and abiotic characteristics of forest stands disturbed by clearcut logging and by stand-replacing fire in Quebec’s boreal landscapes. We hypothesized that unlike fire, logging specifically targeted stands having a higher economic value, i.e., merchantable volume, leaving altered forest characteristics on post-harvested landscapes. We compared two aerial forest surveys of a 2200 km2 study area, one survey completed before any logging activity (preindustrial survey; 1980s), and the second survey collected >10 years after logging activity (modern survey; 2000s). Forest stands at the time of the preindustrial survey were primary forests. We identified stands as either burned, logged, or left aside after forest management of the area (remaining stands) between the two surveys and compared their structural and abiotic characteristics using logistic regression. The structural and abiotic characteristics of burned and logged stands differed significantly. Relative to the burned stands, logged stands were older, denser, and marked by poorer drainage and a higher proportion of black spruce; therefore post-harvest and post-burn landscapes differed in terms of their structural diversities. Traditional even-aged forest management has significantly altered the boreal forest landscape by targeting specific stands having higher economic value and leaving behind stands of lower economic value. Remaining high economic stands should be protected, and a more balanced approach to harvesting must be used in the context of ecosystem-based management.
Maxence Martin, Cornelia Krause, Hubert Morin, Nicole J. Fenton. Unveiling the Diversity of Tree Growth Patterns in Boreal Old-Growth Forests Reveals the Richness of Their Dynamics. 2020. Forests 11:1-18
DOI : 10.3390/f11030252
Research Highlights: Radial growth patterns of trees growing in old-growth boreal forests in eastern Canada can be grouped into a small number of simple patterns that are specific to different old-growth forest types or successional stages. Background and Objectives: Identifying the main radial growth trends in old-growth forests could help to develop silvicultural treatments that mimic the complex dynamics of old-growth forests. Therefore, this study aimed to identify the main radial growth patterns and determine how their frequencies change during forest succession in old-growth forests, focusing on boreal landscapes in eastern Canada. Materials and Methods: We used dendrochronological data sampled from 21 old-growth stands in the province of Quebec, Canada. Tree-ring chronologies were simplified into chronologies of equal length to retain only primary growth trends. We used k-means clustering to identify individual growth patterns and the difference in growth-pattern frequency within the studied stands. We then used non-parametric analyses of variance to compare tree or stand characteristics among the clusters. Results: We identified six different growth patterns corresponding to four old-growth forest types, from stands at the canopy breakup stage to true old-growth stands (i.e., when all the pioneer cohort had disappeared). Secondary disturbances of low or moderate severity drove these growth patterns. Overall, the growth patterns were relatively simple and could be generally separated into two main phases (e.g., a phase of limited radial increment size due to juvenile suppression and a phase of increased radial increment size following a growth release). Conclusions: The complexity of old-growth forest dynamics was observed mainly at the stand level, not at the tree level. The growth patterns observed in true old-growth forests were similar to those observed following partial or stem-selection cuts in boreal stands; thus, these silvicultural treatments may be effective in mimicking old-growth dynamics.
Janie Lavoie, Miguel Montoro Girona, Hubert Morin. Vulnérabilité de la régénération à la TBE. 2020. Le progrès forestier 232:8-12
Julie-Pascale Labrecque-Foy, Miguel Montoro Girona, Hubert Morin. Le castor du Canada : grand inconnu de la forêt boréal. 2020. Le Couvert Boréal p.20
Janie Lavoie, Miguel Montoro Girona, Hubert Morin. Et la régénération dans tout ça ? 2020. Le Couvert Boréal p.20-21
Maxence Martin, Miguel Montoro Girona, Hubert Morin. Driving factors of conifer regeneration dynamics in eastern Canadian boreal old-growth forests. 2020. PlosOne 15(7):e0230221
DOI : 10.1371/journal.pone.0230221
Old-growth forests play a major role in conserving biodiversity, protecting water resources, and sequestrating carbon, as well as serving as indispensable resources for indigenous societies. Novel silvicultural practices must be developed to emulate the natural dynamics and structural attributes of old-growth forests and preserve the ecosystem services provided by these boreal ecosystems. The success of these forest management strategies depends on developing an accurate understanding of natural regeneration dynamics. Our goal was therefore to identify the main patterns and drivers involved in the regeneration dynamics of old-growth forests with a focus on boreal stands dominated by black spruce (Picea mariana (L.) Mill.) and balsam fir (Abies balsamea (L.) Mill.) in eastern Canada. We sampled 71 stands in a 2 200 km2 study area located within Quebec’s boreal region. For each stand, we noted tree regeneration (seedlings and saplings), structural attributes (diameter distribution, deadwood volume, etc.), and abiotic (slope and soil) factors. The presence of seed-trees located nearby and slopes having moderate to high angles most influenced balsam fir regeneration. In contrast, the indirect indices of recent secondary disturbances (e.g., insect outbreaks or windthrows) and topographic constraints (slope and drainage) most influenced black spruce regeneration. We propose that black spruce regeneration dynamics can be separated into distinct phases: (i) layering within the understory, (ii) seedling growth when gaps open in the canopy, (iii) gradual canopy closure, and (iv) production of new layers once the canopy is closed. These dynamics are not observed in paludified stands or stands where balsam fir is more competitive than black spruce. Overall, this research helps explain the complexity of old-growth forest dynamics, where many ecological factors interact at multiple temporal and spatial scales. This study also improves our understanding of ecological processes within primary old-growth forests and identifies the key factors to consider when ensuring the sustainable management of old-growth boreal stands.
Qianqian Ma, Sergio Rossi, Annie Deslauriers, Jian-Guo Huang, Yves Bergeron, Cornelia Krause, Hubert Morin. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences. 2020. PNAS
DOI : 10.1073/pnas.2007058117
Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.
no result
, Hubert Morin, Miguel Montoro Girona. Dynamics of Territorial Occupation by North American Beavers in Canadian Boreal Forests: A Novel Dendroecological Approach. 2020. Forests 11(2):221
DOI : 10.3390/f11020221
Research Highlights: Our study highlights a new, simple, and effective method for studying the habitat use by beavers in Canadian boreal forests. Information regarding the presence of beaver colonies and their habitat occupation is essential for proper forest management and damage prevention in the boreal forest. Background and Objectives: The North American beaver (Castor canadensis) is a major element of natural disturbance, altering the dynamics and structure of boreal forest landscapes. Beaver-related activities also affect human infrastructure, cause floods, and lead to important monetary losses for forestry industries. Our study aimed to determine the spatiotemporal patterns of beaver occupation of lodges over time. Materials and Methods: Using a dendroecological approach to date browsing activity, we studied the occupation of two lodges per water body for eight water bodies located in the boreal forest of Québec, Canada. Results: Three sites showed alternating patterns of lodge use (occupation) over time, three sites (37.5%) demonstrated no alternating patterns of use, and two sites (25%) presented unclear patterns of lodge use. Conclusions: Alternating patterns of lodge use can be linked to food depletion and the need to regenerate vegetation around lodges, while non-alternating patterns may be related to fluctuations in water levels, the specific shrub and tree species surrounding the lodges, the size of the beaver territory, and the number of lodges present on a water body.
Valentina Buttò, Sergio Rossi, Annie Deslauriers, Hubert Morin. Is size an issue of time? Relationship between the duration of xylem development and cell traits. 2019. Annals of Botany 123(7):1257-1265
DOI : 10.1093/aob/mcz032
BACKGROUND AND AIMS: Secondary growth is a process related to the formation of new cells that increase in size and wall thickness during xylogenesis. Temporal dynamics of wood formation influence cell traits, in turn affecting cell patterns across the tree ring. We verified the hypothesis that cell diameter and cell wall thickness are positively correlated with the duration of their differentiation phases.
METHODS: Histological sections were produced by microcores to assess the periods of cell differentiation in black spruce [Picea mariana (Mill.) B.S.P.]. Samples were collected weekly between 2002 and 2016 from a total of 50 trees in five sites along a latitudinal gradient in Quebec (Canada). The intra-annual temporal dynamics of cell differentiation were estimated at a daily scale, and the relationships between cell traits and duration of differentiation were fitted using a modified von Bertalanffy growth equation.
KEY RESULTS: At all sites, larger cell diameters and cell wall thicknesses were observed in cells that experienced a longer period of differentiation. The relationship was a non-linear, decreasing trend that occasionally resulted in a clear asymptote. Overall, secondary wall deposition lasted longer than cell enlargement. Earlywood cells underwent an enlargement phase that lasted for 12 d on average, while secondary wall thickness lasted 15 d. Enlargement in latewood cells averaged 7 d and secondary wall deposition occurred over an average of 27 d.
CONCLUSIONS: Cell size across the tree ring is closely connected to the temporal dynamics of cell formation. Similar relationships were observed among the five study sites, indicating shared xylem formation dynamics across the entire latitudinal distribution of the species.The duration of cell differentiation is a key factor involved in cell growth and wall thickening of xylem, thereby determining the spatial variation of cell traits across the tree ring.
Janie Lavoie, Miguel Montoro Girona, Hubert Morin. Vulnerability of conifer regeneration to spruce budworm outbreaks in the Eastern Canadian boreal forest. 2019. Forests 10(10):850
DOI : 10.3390/f10100850
Spruce budworm (Choristoneura fumiferana) is the main defoliator of conifer trees in North American boreal forests, affecting extensive areas and causing marked losses of timber supplies. In 2017, spruce budworm affected more than 7 million ha of Eastern Canadian forest. Defoliation was particularly severe for black spruce (Picea mariana (Mill.) B.S.P.), one of the most important commercial trees in Canada. During the last decades, intensive forest exploitation practices have created vast stands of young balsam fir (Abies balsamea (L.) Mill.) and black spruce. Most research focused on the impacts of spruce budworm has been on mature stands; its effects on regeneration, however, have been neglected. This study evaluates the impacts of spruce budworm on the defoliation of conifer seedlings (black spruce and balsam fir) in clearcuts. We measured the cumulative and annual defoliation of seedlings within six clearcut black spruce stands in Quebec (Canada) that had experienced severe levels of defoliation due to spruce budworm. For all sampled seedlings, we recorded tree species, height class, and distance to the residual forest. Seedling height and species strongly influenced defoliation level. Small seedlings were less affected by spruce budworm activity. As well, cumulative defoliation for balsam fir was double that of black spruce (21% and 9%, respectively). Distance to residual stands had no significant effect on seedling defoliation. As insect outbreaks in boreal forests are expected to become more severe and frequent in the near future, our results are important for adapting forest management strategies to insect outbreaks in a context of climate change. View Full-Text
Maxence Martin, Nicole J. Fenton, Hubert Morin. Secondary disturbances of low and moderate severity drive the dynamics of eastern Canadian boreal old-growth forests. 2019. Ann. For. Sci. 76(4):108
DOI : 10.1007/s13595-019-0891-2
Both low- and moderate-severity secondary disturbances are drivers of eastern Canadian boreal old-growth forests dynamics. Moderate-severity disturbances reflect mainly spruce budworm outbreaks. Low-severity disturbances are produced by both spruce budworm outbreaks and random events such as windthrow. Each level of disturbance severity has a specific impact on stand dynamics, and both shape the diversity of boreal old-growth forests.
Context
A regular succession of low-severity disturbances is seen as determining the dynamics of the old-growth stage (gap dynamics); however, recent studies suggest that moderate-severity secondary disturbances also play an important role in the dynamics of eastern Canadian boreal forests.
Aims
This study aims to determine if eastern Canadian boreal old-growth forests are driven by a combination of low- and moderate-severity secondary disturbances.
Methods
We reconstructed the 200-year disturbance history of 20 boreal old-growth stands using dendrochronological analysis. We discriminated low- from moderate-severity disturbances based on their respective influence on mean stand growth.
Results
The secondary disturbance regime of eastern Canadian boreal old-growth forests varies highly over time, reflected by disturbance peaks in the chronological record. Most peaks occurred during spruce budworm outbreaks related to both low- and moderate-severity disturbances. Between each peak, low-severity disturbances dominate. Each level of disturbance severity has specific consequences for stand dynamics.
Conclusion
Both low and moderate secondary disturbances are drivers of forest dynamics in eastern Canadian boreal old-growth stands and shape the structural diversity of these stands. The complexity of these dynamics should be recognized in management planning to ensure the efficiency of old-growth forest conservation policies.
Jean-Claude Ruel, Jean-Martin Lussier, Miguel Montoro Girona, Hubert Morin. Post-cutting mortality following experimental silvicultural treatments in unmanaged boreal forest stands. 2019. Frontiers in forests and global change 2:4
DOI : 10.3389/ffgc.2019.00004
Partial cutting has been recommended as an alternative harvesting method to ensure the sustainable management of boreal forests. The success of this approach is closely linked to the survival of residual trees as additional losses through mortality could affect post-cutting timber production at harvest. To better quantify post-cutting mortality in previously unmanaged boreal forests, we addressed two main questions: (1) what is the level of mortality 10 years after cutting? and (2) what ecological factors are involved in this phenomenon? Even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands in the Canadian boreal forest were subjected to three experimental shelterwood treatments, a seed-tree treatment and an untreated control. Tree status (live/dead) was recorded prior to cutting and 10 years after cutting. Dead trees were classified as standing dead, overturned or broken. Ten years after experimental seed-tree treatment, 60% of residual trees were dead, compared to 30% for the shelterwood cuttings. Windthrow (overturned and broken trees) represented 80% of residual tree mortality; only the amount of overturning was influenced by treatment. Broken trees were associated with small-diameter trunks, stands having high growth prior to cutting, younger stands or forest plots located near to adjacent cuts (<200 m). Overturning was associated with a high harvesting intensity and large-diameter trees. Standing dead mortality was the most difficult to explain: it was related to untreated plots having suppressed and small-diameter trees. Based on these results, applying intermediate levels of harvest intensity could reduce post-cutting damage. Understanding tree mortality after cutting is essential to reduce economic losses, improve silvicultural planning and stand selection and ensure ultimately the sustainable harvest of North American boreal forests.
Miguel Montoro Girona, Lionel Navarro, Hubert Morin. A secret hidden in the sediments: Lepidoptera scales. 2018. Frontiers in ecology and evolution 6:2
DOI : 10.3389/fevo.2018.00002
Natural disturbance is one of the major topics in forest ecology. However, most paleoecological studies have only considered the influence of wildfire as an agent of disturbance, with fire history based primarily on the use of charcoal as a proxy for fire events. The frequency and intensity of insect outbreaks and their effect on the forest landscape have been neglected due to the absence of an effective proxy tool. Finding indicators able to provide insight into the impacts of past insect outbreaks is therefore essential. Fossil moth (Lepidoptera) scales offer a new approach for interpreting past insect-related disturbances and assessing the interactions between climate, fire and insect outbreaks. Paleoindicators must respond to three main criteria: (1) be in high abundance, (2) allow for easy identification and (3) remain well-preserved in sediment records. We demonstrate that wing scales are abundant in the boreal forest during insect outbreak periods. We also show that due to their chitin composition, these scales remain well-preserved throughout a 10,000-year sediment record. Furthermore, they are relatively easy to identify after being recovered from lake sediments. Therefore, we introduce the needs, potential and applications of this paleoindicator in forest ecology, and the main directions for the future research. This new approach offers an important scientific advance in ecology through a much improved, higher resolution reconstruction of an important natural disturbance: insect outbreaks.
Miguel Montoro Girona, Jean-Martin Lussier, Hubert Morin, Nelson Thiffault. Conifer regeneration after experimental shelterwood and seed-tree treatments in boreal forests: finding silvicultural alternatives. 2018. Frontiers in Plant Science 9:1145
DOI : 10.3389/fpls.2018.01145
Forest regeneration is a key element in achieving sustainable forest management. Partial harvest methods have been used extensively in temperate broadleaf and mixedwood ecosystems to promote regeneration on poorly stocked sites and to maintain forest composition and productivity. However, their effectiveness in promoting conifer establishment has yet to be demonstrated in unmanaged boreal forests, especially those dominated by black spruce (Picea mariana (Mill.) BSP) where constraints for regeneration differ from those found in more meridional regions. We aimed to evaluate conifer seedling density and dimensions, 10 years after the onset of a gradient of silvicultural treatments varying in harvesting intensities, and to identify the critical factors driving the regeneration process. Study blocks of even-aged black spruce stands in the eastern Canadian boreal forest were submitted to three variants of shelterwood harvesting: a seed-tree harvest, a clear-cut and an untreated control. Shelterwood and seed-tree harvesting were combined with spot scarification to promote regeneration. Shelterwood and seed-tree harvesting produced a density of conifer regeneration sufficient to maintain forest productivity, but they did not promote seedling growth. Black spruce was the predominant species in terms of regeneration density, with proportions 3–5× higher than that for balsam fir (Abies balsamea (L.) Mill.). Ten years after treatment, seed-origin black spruce seedlings were abundant in skidding trails, while layers dominated the residual strips. Balsam fir density was not influenced by treatment nor by tree position relative to skidding trails. Balsam fir and black spruce had different responses to treatment in terms of height and diameter, the former exhibiting a better growth performance and larger diameter in the residual strips. Spot scarification created micro-sites that had a significant impact on the regeneration process. Overall, our results support that shelterwood and seed-tree harvesting combined with scarification enable adequate regeneration in black spruce stands, confirming these treatments as viable silvicultural alternatives to clear-cutting when required by sustainable forest management objectives. © 2018 Montoro Girona, Lussier, Morin and Thiffault.
Lionel Navarro, Yves Bergeron, Hubert Morin, Miguel Montoro Girona. Changes in spatiotemporal patterns of 20th century spruce budworm outbreaks in eastern Canadian boreal forests. 2018. Advances in Intelligent Systems and Computing 871:1905
DOI : 10.3389/fpls.2018.01905
In scenarios of future climate change, there is a projectedincrease in the occurrence and severity of natural disturbances inboreal forests. Spruce budworm (Choristoneura fumiferana)(SBW) is the main defoliator of conifer trees in the North American boreal forests affecting large areas and causing marked losses of timber supplies. However, the impact and the spatiotemporal patterns of SBW dynamics at the landscape scale over the last century remain poorly known. This is particularly true for northern regions dominated by spruce species. The main goal of this study is to reconstruct SBW outbreaks during the 20th century at the landscape scale and to evaluate changes in the associated spatiotemporal patterns in terms of distribution area, frequency, and severity. We rely on a dendroecological approach from sites within the eastern Canadian boreal forest and draw from a large dataset of almost 4,000 trees across a study area of nearly 800,000 km2. Interpolation and analyses of hotspots determined reductions in tree growth related to insect outbreak periods and identified the spatiotemporal patterns of SBW activity over the last century. The use of an Ordinary Least Squares model including regional temperature and precipitation anomalies allows us to assess the impact of climate variables on growth reductions and to compensate for the lack of non-host trees in northern regions. We identified three insect outbreaks having different spatiotemporal patterns, duration, and severity. The first (1905–1930) affected up to 40% of the studied trees, initially synchronizing from local infestations and then migrating to northern stands. The second outbreak (1935–1965) was the longest and the least severe with only up to 30% of trees affected by SBW activity. The third event (1968–1988) was the shortest, yet it was also the most severe and extensive, affecting nearly up to 50% of trees and 70% of the study area. This most recent event was identified for the first time at the limit of the commercial forest illustrating a northward shift of the SBW distribution area during the 20th century. Overall, this research confirms that insect outbreaks are a complex and dynamic ecological phenomena, which makes the understanding of natural disturbance cycles at multiple scales a major priority especially in the context of future regional climate change.
Lionel Navarro, Anne-Élizabeth Harvey, Yves Bergeron, Hubert Morin, Adam A. Ali. A Holocene landscape dynamic multiproxy reconstruction: How do interactions between fire and insect outbreaks shape an ecosystem over long time scales? 2018. PlosOne 13(10):e0204316
DOI : 10.1371/journal.pone.0204316
At a multi-millennial scale, various disturbances shape boreal forest stand mosaics and the distribution of species. Despite the importance of such disturbances, there is a lack of studies focused on the long-term dynamics of spruce budworm (Choristoneura fumiferana (Clem.)) (SBW) outbreaks and the interaction of insect outbreaks and fire. Here, we combine macrocharcoal and plant macrofossils with a new proxy-lepidopteran scalesto describe the Holocene ecology around a boreal lake. Lepidopteran scales turned out to be a more robust proxy of insect outbreaks than the traditional proxies such as cephalic head capsules and feces. We identified 87 significant peaks in scale abundance over the last 10 000 years. These results indicate that SBW outbreaks were more frequent over the Holocene than suggested by previous studies. Charcoal accumulation rates match the established fire history in eastern Canada: A more fire-prone early and late Holocene and reduced fire frequency during the mid-Holocene. Although on occasion, both fire and insect outbreaks were coeval, our results show a generally inverse relationship between fire frequency and insect outbreaks over the Holocene. © 2018 Navarro et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Maxence Martin, Nicole J. Fenton, Hubert Morin. Structural diversity and dynamics of boreal old-growth forests case study in Eastern Canada. 2018. For. Ecol. Manage. 422:125-136
DOI : 10.1016/j.foreco.2018.04.007
Old-growth stands are considered as key components of boreal forest diversity and their preservation is largely integrated into management plans. However, while the differences between old-growth and young forests have largely been studied, little is known about the diversity of boreal old-growth forests. In managed landscapes, the efficacy of old-growth conservation plans may be reduced depending on how these old-growth forests are considered: as a single, homogeneous and steady-state forest type or as multiple, diverse and dynamic forest types. To fulfil this gap, our objectives were: (1) to create a typology of old-growth boreal structures; (2) to observe how these structures are influenced by environmental and temporal parameters; and (3) to elaborate a succession model of old-growth structural dynamics along temporal and environmental gradients. Seventy-one mature and overmature stands were sampled within a 2200?km2 territory situated in Eastern Canada. Cluster analysis divided the sampled stands into two even-aged types, three transition old-growth types and six true old-growth types. Slope, minimum time since last fire and organic horizon depth were the three environmental and temporal parameters influencing the old-growth structures. Paludification-related productivity decline was present in only one old-growth forest type, while the other sites remained productive. These results allowed the creation of three succession models of the dynamics of old-growth stands in the boreal forest of eastern Canada. Boreal stands can undergo numerous structural changes once the old-growth succession process is initiated. An increase in structural diversity when the true old-growth stage is reached, coupled with a variety of secondary disturbance characteristics, favours multiple pathways of structural evolution of these ecosystems over time. Therefore, forest management planning should incorporate this complexity to improve the preservation of old-growth forests in managed territories.
Sergio Rossi, Miguel Montoro Girona, Jean-Martin Lussier, Denis Walsh, Hubert Morin. Understanding tree growth responses after partial cuttings: A new approach. 2017. PlosOne 12(2)
DOI : 10.1371/journal.pone.0172653
Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees.
Jean-Martin Lussier, Miguel Montoro Girona, Denis Walsh, Hubert Morin. Radial Growth Response of Black Spruce Stands Ten Years after Experimental Shelterwoods and Seed-Tree Cuttings in Boreal Forest. 2016. Forests 7(10):240
DOI : 10.3390/f7100240
Partial cutting is thought to be an alternative to achieve sustainable management in boreal forests. However, the effects of intermediate harvest intensity (45%–80%) on growth remain unknown in black spruce (Picea mariana (Mill.) B.S.P.) stands, one of the most widely distributed boreal species with great commercial interest. In this study, we analysed the effect of three experimental shelterwood and one seed-tree treatments on tree radial growth in even-aged black spruce stands, 10 years after intervention. Our results show that radial growth response 8–10 years after cutting was 41% to 62% higher than in untreated plots, with stand structure, treatment, tree position relative to skidding trails, growth before cutting and time having significant interactions. The stand structure conditioned tree growth after cutting, being doubled in younger and denser stands. Tree spatial position had a pronounced effect on radial growth; trees at the edge of the skidding trails showed twice the increase in growth compared to interior trees. Dominant trees before cutting located close to the skidding trails manifested the highest growth response after cutting. This research suggests that the studied treatments are effective to enhance radial wood production of black spruce especially in younger stands, and that the edge effect must be considered in silvicultural management planning.
Mélanie Desrochers, Annie Claude Bélisle, Yves Bergeron, Nicolas Mansuy, Alain Leduc, Sylvie Gauthier, Hubert Morin. Detecting Local Drivers of Fire Cycle Heterogeneity in Boreal Forests: A Scale Issue. 2016. Forests 7(7):139
DOI : 10.3390/f7070139
Severe crown fires are determining disturbances for the composition and structure of boreal forests in North America. Fire cycle (FC) associations with continental climate gradients are well known, but smaller scale controls remain poorly documented. Using a time since fire map (time scale of 300 years), the study aims to assess the relative contributions of local and regional controls on FC and to describe the relationship between FC heterogeneity and vegetation patterns. The study area, located in boreal eastern North America, was partitioned into watersheds according to five scales going from local (3 km2) to landscape (2800 km2) scales. Using survival analysis, we observed that dry surficial deposits and hydrography density better predict FC when measured at the local scale, while terrain complexity and slope position perform better when measured at the middle and landscape scales. The most parsimonious model was selected according to the Akaike information criterion to predict FC throughout the study area. We detected two FC zones, one short (159 years) and one long (303 years), with specific age structures and tree compositions. We argue that the local heterogeneity of the fire regime contributes to ecosystem diversity and must be considered in ecosystem management.
Deepa Pureswaran, Louis De Grandpré, Anthony Taylor, David Paré, Martin Barrette, Jacques Régnière, Hubert Morin, Daniel Kneeshaw. Climate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forest. 2015. Ecology 96(6):1480-1491
DOI : 10.1890/13-2366.1
Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences on the provisioning of goods and services from these forests and on long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. While spruce budworm outbreak centres have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.
Annie Claude Bélisle, Yves Bergeron, Sylvie Gauthier, Dominic Cyr, Hubert Morin. Fire Regime and Old-Growth Boreal Forests in Central Quebec, Canada: An Ecosystem Management Perspective. 2012. Silva Fennica 45(5):889-908
Boreal forest management in Eastern Canada has caused depletion and fragmentation of oldgrowth
ecosystems, with growing impacts on the associated biodiversity. To mitigate impacts
of management while maintaining timber supplies, ecosystem management aims to narrow
the gap between natural and managed landscapes. Our study describes the fire history and
associated natural old-growth forest proportions and distribution of a 5000 km2 area located in
the black spruce-feather moss forest of central Quebec. We reconstructed a stand-origin map
using archival data, aerial photos and dendrochronology. According to survival analysis (Cox
hazard model), the mean fire cycle length was 247 years for the 1734–2009 period. Age-class
distribution modelling showed that old-growth forests were present on an average of 55% of
the landscape over the last 275 years. The mean fire size was 10 113 ha, while most of the
burned area was attributable to fires larger than 10 000 ha, leading to old-growth agglomerations
of hundreds of square kilometres. In regards to our findings, we propose ecosystem
management targets and strategies to preserve forest diversity and resilience.
Robin Duchesneau, Isabelle Lesage, Hubert Morin, Christian Messier. Effects of light and intraspecific competition on gowth and crown morphology of two size classes of understory balsam fir saplings. 2001. For. Ecol. Manage. 140(2-3):215-225.
DOI : 10.1016/S0378-1127(00)00281-4
This paper characterizes the growth and crown morphology of young balsam fir saplings naturally regenerated under a gradient of understory light environments and intraspecific competition densities for two size classes (50-100 cm and 100-200 cm). Most growth and crown morphological parameters investigated were strongly related to the natural light gradient investigated (3-83% full sunlight), but the relationship tended to plateau at around 25% full sunlight. The relationships were generally better for the larger size class. Intraspecific competition did not significantly affect growth and crown morphology of saplings receiving less than 25% full sunlight, but it affected relative height growth, relative radial growth and the apical dominance ratio for those receiving more than 25% full sunlight (R-2=0.506; p<0.001; R-2=0.403; p<0.002; R-2=0.348; p<0.001, respectively). These results suggest that live crown ratio, apical dominance ratio and the number of internodal branches can provide, alone or in combination, useful indicators of vigour for understory fir. Such a study provides the basic data inputs required for the development of empirically-derived mechanistic models that can predict understory tree growth and survival. © 2001 Elsevier Science B.V. All rights reserved. © 2001 Elsevier B.V. All rights reserved.
Sylvain Parent, Christian Messier, Hubert Morin. Effects of adventitious roots on age determination in balsam fir (Abies balsama (L.) Mill.) regeneration. 2000. Can. J. For. Res. 30(3):513-518.
DOI : 10.1139/cjfr-30-3-513
The age structure of balsam fir (Abies balsamea (L.) Mill.) regeneration is frequently used to investigate boreal forest dynamics of North America. Tree ages are usually estimated by counting annual growth rings at the shoot-root interface located above or close to the root system. Inaccurately locating the shoot-root interface could lead to imprecise age determination. In this study, balsam fir seedlings (<2 m height) were harvested in whole from closed forest stands located in the province of Quebec, Canada. Seedling age was determined by (i) counting the number of annual growth rings at the presumed shoot-root interface, and (ii) counting all terminal bud scars from the apex to the base of the hypocotyl (true collar). For all seedlings with adventitious roots, the number of terminal bud scars on the entire trunk was higher than the number of growth rings at the shoot-root interface. The formation of adventitious roots on the belowground trunk was accompanied by a reverse taper phenomenon, i.e., the number of annual growth rings decreased from the presumed shoot-root interface to the true collar. Counting annual growth rings at any level on the trunk of balsam fir seedlings that form adventitious root systems would not be reliable, underestimation's exceeding 20 years are possible and the resulting age structures could lead to erroneous interpretations of regeneration dynamics.
La structure d'âge de la régénération de sapin baumier (Abies balsamea (L.) Mill.) est souvent utilisée pour étudier la dynamique de la forêt boréale en Amérique du Nord. L'âge des arbres est habituellement déterminé en comptant les cernes annuels à la jonction entre la tige et les racines qui est située au-dessus ou près du système racinaire. La détermination de l'âge peut manquer de précision si la jonction entre la tige et les racines n'est pas localisée avec exactitude. Dans cette étude, des semis de sapin baumier (<2 m de haut) ont été récoltés en entier dans des peuplements forestiers fermés situés dans la province de Québec, au Canada. L'âge des semis a été déterminé (i) en comptant le nombre de cernes annuels à la jonction présumée entre la tige et les racines et (ii) en comptant les cicatrices des écailles de tous les bourgeons terminaux de l'apex à la base de l'hypocotyle (collet véritable). Chez tous les semis avec des racines adventives, le nombre de cicatrices des écailles des bourgeons terminaux sur toute la tige était plus élevé que le nombre de cernes annuels à la jonction entre la tige et les racines. La formation de racines adventives sur la portion hypogée de la tige était accompagnée d'un phénomène de défilement inversé, c'est-à-dire que le nombre de cernes annuels diminuait de la jonction présumée entre la tige et les racines jusqu'au collet véritable. Le décompte des cernes annuels à n'importe quel niveau sur la tige des semis de sapin baumier qui forment un système de racines adventives n'est pas fiable; on peut sous-estimer l'âge par plus de 20 ans et les structures d'âge qui en résultent peuvent conduire à des interprétations erronées de la dynamique de la régénération. ©2000 NRC Canada
Ola Engelmark, Luc Sirois, Yves Bergeron, Hubert Morin, Brian Harvey. Key issue in disturbance dynamics in boreal forests: introduction. 1998. J. Veg. Sci. 9(4):464-468.
Claude Joyal, Yves Bergeron, Alain Leduc, Hubert Morin. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec. 1995. Can. J. For. Res. 25(8):1375-1384.
DOI : 10.1139/x95-150
Balsam fir (Abies balsamea (L.) Mill.) mortality caused by the last spruce budworm (Choristoneura fumiferana (Clem.)) outbreak (1970-1987) was studied in 624 sites belonging to a complex natural forest mosaic originating from different fires in northwestern Quebec. Multiple regression analyses were used to assess the respective effects of stand structure, species composition, site characteristics, and the forest composition surrounding the stand on observed stand mortality. Mortality was observed to increase in relation to diameter of the trees, basal area of balsam fir, and the number of stands dominated by conifers in the forest mosaic. All of these factors showed significant independent effects, but 60% of the variance remained unexplained. Site characteristics, however, did not show a significant relationship to stand mortality. The results suggest that forest composition at both the stand and the forest mosaic levels may be responsible for differing degrees of defoliation that result in differences in stand mortality. Forest management strategies that favor the presence of mixed compositions both at the stand level and at the mosaic level may contribute to decreased stand vulnerability. ©1995 NRC Canada
Hubert Morin, D Laprise, Yves Bergeron. Chronology of spruce budworm outbreaks in the lake Duparquet region, Abitibi, Québec. 1993. Can. J. For. Res. 23(8):1497-1506.
DOI : 10.1139/x93-189
The chronology of eastern spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks in the vicinity of Lake Duparquet in the Abitibi region, Quebec, was determined for a period of 200 years using dendroecological methods. Growth patterns of two budworm host species, balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss). Were compared with white cedar (Thuja occidentalis L.), a nonhost species, and with maps of defoliation surveys. The method permitted precise dating of past outbreaks prior to the last two decades, where cartographic information is either imprecise or nonexistent. Growth reductions associated with insect defoliation situate three outbreak periods in this century between 1970 and 1987, between 1930 and 1950, and between 1919 and 1929. A fourth outbreak period may have occurred in the 19th century between 1810 and 1832. The outbreaks in this region were less severe than those that have occurred further south of the insect's northern limit of dispersion. Nevertheless, they did have a major impact on the dynamics of balsam fir populations in the region, as revealed by a massive invasion of fir between 1915 and 1940, and a marked growth release between 1940 and 1950. Dry periods, reflected in the growth curve of cedar, were associated with recorded outbreak periods. ©1993 NRC Canada
voir les plus récentes
Judicaël Osse, Yves Bergeron, Mathieu Bouchard, Élise Filotas, Marie-Josée Fortin, Rob Johns, Hubert Morin, Pierre Therrien, Marie-Eve Sigouin, François Lévesque , Anoj Subedi, Zinsou Max Debaly, Guillaume Tougas. Un défi boréal – Projections de l’activité de la tordeuse des bourgeons d’épinette (TBE) dans un contexte de changement climatique présenté dans le cadre du colloque La tordeuse des bourgeons de l'épinette : comprendre, prévoir, lutter.
Rendez-vous de la connaissance en aménagement forestier durable (2023-10-16)
Sanghyun Kim, Miguel Montoro Girona, Patricia Raymond, Annie DesRochers, Hubert Morin, Yves Bergeron. Effects of Partial Harvest and Stand Structure on Conifer Regeneration in Black Spruce Stands: The MISA Project 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-29)
Anoj Subedi, Philippe Marchand, Yves Bergeron, Hubert Morin, Miguel Montoro Girona. Climate warming reduces black spruce growth during an outbreak period 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-28)
Maxence Martin, Hubert Morin, Osvaldo Valeria. "Old" is not precise enough: a finer knowledge of old-growth boreal forests is critical to successful conservation and management strategies Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-08)
Inès Diamant, Maxence Martin, Junior Tremblay, Hubert Morin, Jacques Ibarzabal. Boreal birds and all you've ever wanted to know about their favorite structural attributes in mixed old-growth forest Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-06)
Hubert Morin Huit mille ans d’histoire des épidémies de la TBE Colloques du SCF-CFL (2022-01-27)
Sanghyun Kim, Miguel Montoro Girona, Patricia Raymond, Annie DesRochers, Hubert Morin, Christine Martineau, Yves Bergeron. Can partial harvest promote conifer regeneration and soil ecosystem in black spruce stands? 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Anoj Subedi, Miguel Montoro Girona, Philippe Marchand, Yves Bergeron, Hubert Morin. Comment la tordeuse des bourgeons de l'épinette affecte la croissance des arbres ? une approche dendrochronologique et climatique 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Milva Druguet Dayras, Damien Rius, Hubert Morin, Eve Afonso, Hugues Terreaux de felice, Miguel Montoro Girona. Voyage dans le passé pour reconstruire les régimes de perturbations naturelles dans les forêts boréales : une approche multiple 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Pierre Grondin, Maxence Martin, Hubert Morin, Yan Boucher. La tordeuse des bourgeons de l’épinette : moteur de la dynamique des vieilles forêts boréales et source d’inspiration pour l’aménagement écosystémique? Les Rendez-vous de la connaissance en aménagement forestier durable MFFP - Les ravageurs forestiers (2021-05-18)
Janie Lavoie, Maxence Martin, Annie Deslauriers, Mathieu Bouchard, Joshua Jarry, Anne-Sophie Caron, Hubert Morin. Rendez-vous de la connaissance en aménagement forestier durable - Ravageurs forestiers Rendez-vous de la connaissance en aménagement forestier durable (2021-05-18)
Maxence Martin, Osvaldo Valeria, Hubert Morin, Nicole J. Fenton. Quand on voit flou, il est temps de changer de lunettes : les atouts du LiDAR pour notre regard sur la forêt boréale 22e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, complètement virtuel (2020-12-02)
Anoj Subedi, Miguel Montoro Girona, Philippe Marchand, Hubert Morin, Marie-Josée Fortin. Understanding complex interactions in forest ecosystems : Impact of climate on the defoliation of black spruce by the spruce budworm 22e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, complètement virtuel (2020-12-02)
Raphaël Chavardes, Fabio Gennaretti, Xavier Cavard, Pierre Grondin, Lorena Balducci, Hubert Morin, Alain Leduc, Ari Kainelainen, Danielle Charron, T. Châtellier, Yves Bergeron. Le mélange des espèces dans le peuplement peut-il atténuer la vulnérabilité des forêts boréales aux changements climatiques et aux épidémies d’insectes ? 22e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, complètement virtuel (2020-12-02)
Philippe Marchand, Miguel Montoro Girona, Mathieu Bouchard, Élise Filotas, Hubert Morin, Louis De Grandpré, Yves Bergeron, Pierre Therrien, Anouschka R. Hof, Matthew Duveneck. Projections de l’activité de la tordeuse des bourgeons de l’épinette dans un contexte de changement climatique 21e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2019-11-30)
Janie Lavoie, Hubert Morin, Miguel Montoro Girona. Impacts de la TBE sur la régénération d’épinettes
noires selon différentes coupes forestières 21e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2019-11-30)
Hubert Morin La dynamique spatiale et temporelle des épidémies de la Tordeuse des bourgeons de l’épinette en Amérique du Nord : Une analyse multi-proxy. La dynamique spatiale et temporelle des épidémies (2009-11-17)
Olivier Desjardins, Hubert Morin, Yves Bergeron. Influence de la proportion des deux espèces hôtes de la tordeuse, au niveau du peuplement et du paysage, sur l'impact et le synchronisme des épidémies 69ième congrès annuel de l’ACFAS. Université Sherbrooke, Sherbrooke, Québec, Canada.
Olivier Desjardins, Hubert Morin, Yves Bergeron. Impact of the last spruce budworm outbreak in Quebec and Ontario in relation to the balsam fir relative proportion in a stand 85th Annual Meeting of the Ecological Society of America, Snowbird, Utah, USA.
Olivier Desjardins, Hubert Morin, Yves Bergeron. Influence of balsam fir content, at the stand level, on the impact of the last spruce budworm outbreak in the boreal forest of eastern Canada 3rd International Workshop on 3rd International Workshop on Disturbance dynamics in boreal forests. Kuhmo, Finland.