Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam A. Ali, Chéïma Barhoumi , Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, R.H.W. Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, M.E. Edwards, A. Feurdean, D. Foster, Konrad Gajewski, M. Gałka, Michelle Garneau, T. Giesecke, G. Gil Romera, Martin-Philippe Girardin, D. Hoefer, K. Huang, J. Inoue, E. Jamrichová, N. Jasiunas, W. Jiang, G. Jiménez-Moreno, M. Karpińska-Kołaczek, P. Kołaczek, N. Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, F. Li, J. Li, O. Lisitsyna, J.A. López-Sáez, R. Luelmo-Lautenschlaeger, Gabriel Magnan, E.K. Magyari, A. Maksims, K. Marcisz, E. Marinova, J. Marlon, S. Mensing, J. Miroslaw-Grabowska, W. Oswald, S. Pérez-Dı́az, R. Pérez-Obiol, S. Piilo, A. Poska, X. Qin, Cécile C. Remy, Pierre J.H. Richard, S. Salonen, N. Sasaki, H. Schneider, W. Shotyk, M. Stancikaite, D. Šteinberga, N. Stivrins, H. Takahara, Z. Tan, L. Trasune, C.E. Umbanhowar, M. Väliranta, J. Vassiljev, X. Xiao, Q. Xu, X. Xu, E. Zawisza, Y. Zhao, Z. Zhou, Jordan Paillard. The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records. 2022. Earth Syst. Sci. Data 14:1109-1124
DOI : 10.5194/essd-14-1109-2022
Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes through time in the geological past. Existing global compilations are not geographically comprehensive and do not provide consistent metadata for all sites. Furthermore, the age models provided for these records are not harmonised and many are based on older calibrations of the radiocarbon ages. These issues limit the use of existing compilations for research into past fire regimes. Here, we present an expanded database of charcoal records, accompanied by new age models based on recalibration of radiocarbon ages using IntCal20 and Bayesian age-modelling software. We document the structure and contents of the database, the construction of the age models, and the quality control measures applied. We also record the expansion of geographical coverage relative to previous charcoal compilations and the expansion of metadata that can be used to inform analyses. This first version of the Reading Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database (RPDv1b – Harrison et al., 2021) is available at https://doi.org/10.17864/1947.000345.
Gabriel Magnan, Eloïse LeStum-Boivin, Pierre Grondin, Maxime Asselin, Michelle Garneau, Yves Bergeron, Martin Lavoie. Comprendre l'évolution des tourbières de la pessière à mousses de l'Ouest. 2020. Avis de recherche forestière no 150.
Les tourbières abondent dans le sous-domaine bioclimatique de la pessière à mousses de l’Ouest et certaines d’entre elles sont recouvertes de forêts productives justifiant une récolte de matière ligneuse. Les études paléoécologiques révèlent que l’évolution millénaire de cet écosystème est issue d’interactions complexes entre les feux, la topographie et le climat. Dans le contexte des changements climatiques, il est probable que les tourbières s’assècheront et seront colonisées davantage par les conifères. Elles pourraient donc devenir plus vulnérables aux feux, et ainsi transformer ces grands réservoirs de carbone en une importante source de gaz à effet de serre. Ces nouvelles connaissances permettront d’améliorer les pratiques sylvicoles, notamment en considérant la fonction de séquestration de carbone dans ces milieux.
Gabriel Magnan, Eloïse LeStum-Boivin, Michelle Garneau, Yves Bergeron, Pierre Grondin. Long-Term Carbon Sequestration
in Boreal Forested Peatlands
in Eastern Canada 2020. Ecosystems
DOI : 10.1007/s10021-020-00483-x
Forested peatlands are widespread in the boreal landscape, but their role as carbon (C) pools remains poorly documented. In this study, we investigated the long-term C sequestration function of boreal forested bogs in relation to fires in eastern Canada. Results show that the forested peatlands comprise substantial peat C mass reaching values similar to open peatlands. At the six studied peatland sites, the amount of C stored in peat (62–172 kg C m?2) exceeds substantially the aboveground tree biomass C (1.5–5.3 kg C m?2). The C locked up in live conifers on the peatlands corresponds only to a small fraction of the C stored in peat (1–6%). In comparison, the shallow organic layer (??30 cm) in the adjacent paludifying stands store 10.8 kg C m?2 on average, which is about twice as much C as the live conifers. Long-term apparent C accumulation rates are relatively low in the studied forested bogs (mean: 15.9 g C m?2 y?1), suggesting that these ecosystems have lower C sequestration potential than non-forested bogs over millennia. The charcoal data suggest that past local fires reduced C sequestration rates, but these peatlands burn much less frequently than upland forests and are thus more efficient long-term C stores. This study highlights the importance of boreal forested peatlands as C reservoirs and helps understanding how fires, logging and climate change can affect their C sequestration function. These findings have important implications for ecosystem management that aims at maximizing C sequestration at the landscape level to mitigate climate change.
Eloïse LeStum-Boivin, Gabriel Magnan, Michelle Garneau, Yves Bergeron, Nicole J. Fenton, Pierre Grondin. Spatiotemporal evolution of paludification associated with autogenic
and allogenic factors in the black spruce–moss boreal forest of
Québec, Canada. 2019. Quaternary Research 91(2):650-664
DOI : 10.1017/qua.2018.101
Paludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)–moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (?50 cm) and thick forest humus (<40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment of Sphagnum in microdepressions. Paludification resulted in the decline of some coniferous species such as Abies balsamea and Pinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.
Gabriel Magnan, Eloïse LeStum-Boivin, Yves Bergeron, Michelle Garneau, Pierre Grondin, Nicole J. Fenton. Holocene vegetation dynamics and hydrological variability in forested peatlands of the Clay Belt, eastern Canada, reconstructed using a palaeoecological approach. 2018. Boreas
DOI : 10.1111/bor.12345
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial?scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water?table depths were inferred using testate amoeba analyses. High?resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present?day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.
Cécile Fouquemberg, Cécile C. Remy, Benjamin Andrieux, Gabriel Magnan, Benoit Brossier, Yves Bergeron, Hugo Asselin, Brigitte Talon, Lisa Bajolle, Adam A. Ali, Olivier Blarquez, Pierre Grondin. Guidelines for the use and interpretation of paleofire reconstructions based on various archives and proxies. 2018. Quaternary Research 193:312-322
DOI : 10.1016/j.quascirev.2018.06.010
We present a comparative analysis of fire reconstructions from tree rings and from wood charcoal preserved in forest soils, peat and lake sediments. Our objective is to highlight the benefits and limits of different archives and proxies to reconstruct fire histories. We propose guidelines to optimize proxy and archive choice in terms of spatial and temporal scales of interest. Comparisons were performed for two sites in the boreal forest of northeastern North America. Compared to others archives, tree-ring analysis remains the best choice to reconstruct recent fires (<1000 years). For longer periods (from several centuries to millennia), lake charcoal can be used to reconstruct regional or local fire histories depending on the method used, but the focus should be on historical trends rather than on the identification of individual fire events. Charcoal preserved in peat and soils can be used to identify individual fire, but sometimes cover shorter time periods than lake archives.
Cécile C. Remy, Gabriel Magnan, Yves Bergeron, Olivier Blarquez, Martin Lavoie, Adam A. Ali, Christelle Hely-Alleaume. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America. 2017. Environmental Research Letters 12(3):article 035005
Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.
voir la liste complète