Nina Ryzhkova, Alexander Kryshen, Mats Niklasson, Guilherme Pinto, A. Aleinikov, I. Kutyavin, Yves Bergeron, Adam Ali, Igor Drobyshev. Climate drove the fire cycle and humans influenced fire
occurrence in the East European boreal forest. 2022. Ecological Monographs 92(4): e1530
DOI : 10.1002/ecm.1530
Understanding long-term forest fire histories of boreal landscapes is instrumental for parameterizing climate–fire interactions and the role of humans affecting natural fire regimes. The eastern sections of the European boreal zone currently lack a network of annually resolved and centuries-long forest fire histories. To fill in this knowledge gap, we dendrochronologically reconstructed the 600-year fire history of a middle boreal pine-dominated landscape of the southern part of the Republic of Komi, Russia. We combined the reconstruction of fire cycle (FC) and fire occurrence with the data on the village establishment and climate proxies and discussed the relative contribution of climate versus human land use in shaping historic fire regimes. Over the 1340–1610 ce period, the territory had a FC of 66 years (with the 90% confidence envelope of 56.8 and 78.6 years). Fire activity increased during the 1620–1730 ce period, with the FC reaching 32 years (31.0–34.7 years). Between 1740–1950, the FC increased to 47 years (41.9–52.0). The most recent period, 1960–2010, marks FC's historic maximum, with the mean of 153 years (102.5–270.3). Establishment of the villages, often as small harbors on the Pechora River, was associated with a non-significant increase in fire occurrence in the sites nearest the villages (p = 0.07–0.20). We, however, observed a temporal association between village establishment and fire occurrence at the scale of the whole studied landscape. There was no positive association between the former and the FC. In fact, we documented a decline in the area burned, following the wave of village establishment during the second half of the 1600s and the first half of the 1700s. The lack of association between the dynamics of FC and the dates of village establishments, and the significant association between large fire years and the early and latewood pine chronologies, used as historic drought proxy, indirectly suggests that the climate was the primary control of the landscape-level FCs in the studied forests. Pine-dominated forests of the Komi Republic may hold a unique position as the ecosystem with the shortest history of human-related shifts in fire cycles across the European boreal region.
Dorian Gaboriau, Adam Ali, Christelle Hely-Alleaume, Hugo Asselin, Martin-Philippe Girardin. Drivers of extreme wildfire years in the 1965–2019 fire regime of the Tłı̨chǫ First Nation territory, Canada 2022. Ecoscience 29(3):249-265
DOI : 10.1080/11956860.2022.2070342
Exceptionally large areas burned in 2014 in central Northwest Territories (Canada), leading members of the Tłı̨chǫ First Nation to characterize this year as ‘extreme’. Top-down climatic and bottom-up environmental drivers of fire behavior and areas burned in the boreal forest are relatively well understood, but not the drivers of extreme wildfire years (EWY). We investigated the temporal and spatial distributions of fire regime components (fire occurrence, size, cause, fire season length) on the Tłı̨chǫ territory from 1965 to 2019. We used BioSIM and data from weather stations to interpolate mean weather conditions, fuel moisture content and fire-weather indices for each fire season, and we described the environmental characteristics of burned areas. We identified and characterized EWY, i.e., years exceeding the 80th percentile of annual area burned for the study period. Temperature and fuel moisture were the main drivers of areas burned. Nine EWY occurred from 1965 to 2019, including 2014. Compared to non-EWY, EWY had significantly higher mean temperature (>14.7°C) and exceeded threshold values of Drought Code (>514), Initial Spread Index (>7), and Fire Weather Index (>19). Our results will help limit the effects of EWY on human safety, health and Indigenous livelihoods and lifestyles.
Sandy P. Harrison, Roberto Villegas-Diaz, Esmeralda Cruz-Silva, Daniel Gallagher, David Kesner, Paul Lincoln, Yicheng Shen, Luke Sweeney, Daniele Colombaroli, Adam Ali, Chéïma Barhoumi , Yves Bergeron, Tatiana Blyakharchuk, Přemysl Bobek, R.H.W. Bradshaw, Jennifer L. Clear, Sambor Czerwiński, Anne-Laure Daniau, John Dodson, Kevin J. Edwards, M.E. Edwards, A. Feurdean, D. Foster, K. Gajewski, M. Gałka, Michelle Garneau, T. Giesecke, G. Gil Romera, Martin-Philippe Girardin, D. Hoefer, K. Huang, J. Inoue, E. Jamrichová, N. Jasiunas, W. Jiang, G. Jiménez-Moreno, M. Karpińska-Kołaczek, P. Kołaczek, N. Kuosmanen, Mariusz Lamentowicz, Martin Lavoie, F. Li, J. Li, O. Lisitsyna, J.A. López-Sáez, R. Luelmo-Lautenschlaeger, Gabriel Magnan, E.K. Magyari, A. Maksims, K. Marcisz, E. Marinova, J. Marlon, S. Mensing, J. Miroslaw-Grabowska, W. Oswald, S. Pérez-Dı́az, R. Pérez-Obiol, S. Piilo, A. Poska, X. Qin, Cécile Remy, Pierre J.H. Richard, S. Salonen, N. Sasaki, H. Schneider, W. Shotyk, M. Stancikaite, D. Šteinberga, N. Stivrins, H. Takahara, Z. Tan, L. Trasune, C.E. Umbanhowar, M. Väliranta, J. Vassiljev, X. Xiao, Q. Xu, X. Xu, E. Zawisza, Y. Zhao, Z. Zhou, Jordan Paillard. The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records. 2022. Earth Syst. Sci. Data 14:1109-1124
DOI : 10.5194/essd-14-1109-2022
Sedimentary charcoal records are widely used to reconstruct regional changes in fire regimes through time in the geological past. Existing global compilations are not geographically comprehensive and do not provide consistent metadata for all sites. Furthermore, the age models provided for these records are not harmonised and many are based on older calibrations of the radiocarbon ages. These issues limit the use of existing compilations for research into past fire regimes. Here, we present an expanded database of charcoal records, accompanied by new age models based on recalibration of radiocarbon ages using IntCal20 and Bayesian age-modelling software. We document the structure and contents of the database, the construction of the age models, and the quality control measures applied. We also record the expansion of geographical coverage relative to previous charcoal compilations and the expansion of metadata that can be used to inform analyses. This first version of the Reading Palaeofire Database contains 1676 records (entities) from 1480 sites worldwide. The database (RPDv1b – Harrison et al., 2021) is available at https://doi.org/10.17864/1947.000345.
Chéïma Barhoumi , Adam Ali, O Peyron , L Dugergil , O Borisova , G Subetto , Alexander Kryshen, Igor Drobyshev, Nina Ryzhkova. Did long-term fire control the coniferous boreal forest composition of northern Ural region 2020. J. of Biogeography 47(11):2426-2441
DOI : https://doi.org/10.1111/jbi.13922
Dorian Gaboriau, Yves Bergeron, Cécile Remy, Adam Ali, Christelle Hely-Alleaume, Martin-Philippe Girardin, Hugo Asselin. Temperature and fuel availability control fire size/severity in the
boreal forest of central Northwest Territories, Canada. 2020. Quaternary Science Review 250:106697
DOI : 10.1016/j.quascirev.2020.106697
The north-central Canadian boreal forest experienced increased occurrence of large and severe wildfires caused by unusually warm temperatures and drought events during the last decade. It is, however, difficult to assess the exceptional nature of this recent wildfire activity, as few long-term records are available in the area. We analyzed macroscopic sedimentary charcoal from four lakes and pollen grains from one of those lakes to reconstruct long-term fire regimes and vegetation histories in the boreal forest of central Northwest Territories. We used regional estimates of past temperature and hydrological changes to identify the climatic drivers of fire activity over the past 10,000 years. Fires were larger and more severe during warm periods (before ca. 5000 cal yrs. BP and during the last 500 years) and when the forest landscape was characterized by high fuel abundance, especially fire-prone spruce. In contrast, colder conditions combined with landscape opening (i.e., lower fuel abundance) during the Neoglacial (after ca. 5000 cal yrs. BP) were related with a decline in fire size and severity. Fire size and severity increased during the last five centuries, but remained within the Holocene range of variability. According to climatic projections, fire size and severity will likely continue to increase in central Northwest Territories in response to warmer conditions, but precipitation variability, combined with increased abundance of deciduous species or opening of the landscape, could limit fire risk in the future.
Gwenaël Magne, Benoit Brossier, Emmanuel Gandouin, Laure Paradis, Alexander Kryshen, Samuel Alleaume, Adam Ali, Igor Drobyshev, Christelle Hely-Alleaume. Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest. 2020. Holocene 30(3):380-388
DOI : 10.1177/0959683619887420
We evaluated the skills of different palaeofire reconstruction techniques to reconstruct the fire history of a boreal landscape (Russian Karelia) affected by surface fires. The analysis of dated lacustrine sediments from two nearby lakes was compared with independent dendrochronological dating of fire scars, methods which have rarely been used in context of surface fires. We used two sediment sub-sampling volumes (1 and 3.5 cm3, wet volumes) and three methods of calculating the Charcoal Accumulation Rate to reconstruct fire histories: CHAR number, charcoal surface area and estimated charcoal volume. The results show that palaeofire reconstructions obtained with fossil charcoal data from lake sediments and dendrochronology are similar and complementary. Dendrochronological reconstruction of fire scars established 12 fire dates over the past 500 years, and paleo-data from lake sediments identified between 7 and 13 fire events. Several ‘false fire events’ were also recorded in the charcoal chronologies, likely because of errors associated with the estimation of the sediment accumulation rate in the unconsolidated part of the sediment. The number of replicates, that is, number of sub-samples and lakes analyzed, had an effect on the number of identified fire events, whereas no effect was seen in the variation in the analyzed sediment volume or the choice of the charcoal-based metric. Whenever possible, we suggest the use of the dendrochronological data as an independent control for the calibration of charcoal peak series, which helps provide more realistic millennia-long reconstruction of past fire activity. We also argue for the use of 1 cm3 sample volume, a sampling protocol involving sampling of more than one lake, and sufficient number of intra-sample replicates to achieve skilful reconstructions of past fire activity.
Emeline Chaste, Yves Bergeron, Olivier Blarquez, Cécile Remy, Martin-Philippe Girardin, Adam Ali, Christelle Hely-Alleaume. A Holocene Perspective of Vegetation Controls on Seasonal Boreal Wildfire Sizes Using Numerical Paleo-Ecology. 2020. Frontiers in ecology and the environment 3:106
DOI : 10.3389/ffgc.2020.511901
Wildland fire is the most important disturbance in the boreal forests of eastern North America, shaping the floral composition, structure and spatial arrangement. Although the long-term evolution of the frequency and quantity of burned biomass in these forests can be estimated from paleo-ecological studies, we know little about the evolution of fire sizes. We have therefore developed a methodological approach that provides insights into the processes and changes involved over time in the historical fire-vegetation-climate environment of the coniferous forests (CF) and mixedwood forests (MF) of eastern boreal North America, paying particular attention to the metric of fire size. Lacustrine charcoal particles sequestered in sediments from MF and CF regions were analyzed to reconstruct changes in estimated burned biomass, fire frequency, and their ratio interpreted as fire size (FS-index), over the last 7,000 years. A fire propagation model was used to simulate past fire sizes using both a reference landscape, where MF and CF compositions over time were prescribed using pollen reconstructions, and climate inputs provided by the HadCM3BL-M1 snapshot simulations. Lacustrine charcoals showed that Holocene FS-indices did not differ significantly between MF and CF because of the high variability in fire frequencies. However, the estimated burned biomass from MF was always lower than that from CF, significantly so since 5,000 BP. Beyond the variability, the FS-index was lower in MF than CF throughout the Holocene, with slight changes in both forests from 7,000 to 1,000 BP, and simultaneous increases over the last millennium. The fire model showed that MF fires were consistently smaller than CF fires throughout the Holocene, with larger differences in the past than today. The fire model also highlighted the fact that spring fires in both forest types have always been larger than summer fires over the last 7,000 years, which concurs with present-day fire statistics. This study illustrates how fire models, built and used today for forecasting and firefighting, can also be used to enhance our understanding of past conditions within the fire-vegetation-climate nexus.
Julie C. Aleman, Andy Hennebelle, Yves Bergeron, Adam Ali, Christopher Carcaillet, Josianne Landry, Olivier Blarquez, Pierre Grondin. The reconstruction of burned area
and fire severity using charcoal
from boreal lake sediments. 2020. Holocene 30(10):1400-1409
DOI : 10.1177/0959683620932979
Although lacustrine sedimentary charcoal has long been used to infer paleofires, their quantitative reconstructions require improvements of the calibration of their links with fire regimes (i.e. occurrence, area, and severity) and the taphonomic processes that affect charcoal particles between the production and the deposition in lake sediments. Charcoal particles >150?µm were monitored yearly from 2011 to 2016 using traps submerged in seven head lakes situated in flat-to-rolling boreal forest landscapes in eastern Canada. The burned area was measured, and the above-ground fire severity was assessed using the differentiated normalized burn ratio (dNBR) index, derived from LANDSAT images, and measurements taken within zones radiating 3, 15, and 30?km from the lakes. In order to evaluate potential lag effects in the charcoal record, fire metrics were assessed for the year of recorded charcoal recording (lag 0) and up to 5?years before charcoal deposition (lag 5). A total of 92 variables were generated and sorted using a Random Forest-based methodology. The most explanatory variables for annual charcoal particle presence, expressed as the median surface area, were selected. Results show that, temporally, sedimentary charcoal accurately recorded fire events without a temporal lag; spatially, fires were recorded up to 30?km from the lakes. Selected variables highlighted the importance of burned area and fire severity in explaining lacustrine charcoal. The charcoal influx was thus driven by fire area and severity during the production process. The dispersion process of particles resulted mostly of wind transportation within the regional (<30?km) source area. Overall, charcoal median surface area represents a reliable proxy for reconstructing past burned areas and fire severities.
Martin-Philippe Girardin, Jeanne Portier, Cécile Remy, Adam Ali, Jordan Paillard, Olivier Blarquez, Hugo Asselin, Sylvie Gauthier, Yves Bergeron, Pierre Grondin. Coherent signature of warming-induced extreme sub-continental boreal wildfire activity 4,800 and 1,100 years BP. 2019. Environmental Research Letters 14(12):124042
DOI : 10.1088/1748-9326/ab59c9
Climate changes are expected to progressively increase extreme wildfire frequency in forests. Finding past analogs for periods of extreme biomass burning would provide valuable insights regarding what the effects of warming might be for tree species distribution, ecosystem integrity, atmospheric greenhouse gas balance, and human safety. Here, we used a network of 42 lake-sediment charcoal records across a ~2000 km transect in eastern boreal North America to infer widespread periods of wildfire activity in association with past climate conditions. The reconstructed fluctuations in biomass burning are broadly consistent with variations in ethane concentration in Greenland polar ice cores. Biomass burning fluctuations also significantly co-varied with Greenland temperatures estimated from ice cores, at least for the past 6000 years. Our retrospective analysis of past fire activity allowed us to identify two fire periods centered around 4800 and 1100 BP, coinciding with large-scale warming in northern latitudes and having respectively affected an estimated ~71% and ~57% of the study area. These two periods co-occurred with widespread decreases in mean fire-return intervals. The two periods are likely the best analogs for what could be anticipated in terms of impacts of fire on ecosystem services provided by these forests in coming decades.
Yves Bergeron, Dominic Senici, Cécile Remy, Laure Paradis, Han Chen, Martin Lavoie, Adam Ali. Coniferization of the mixed?wood boreal forests under warm climate. 2019. Journal of Quaternary Science 34(7):509-518
DOI : 10.1002/jqs.3136
Mixed?wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long?term drivers of these differences between landscapes across mixed?wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed?wood boreal forest of north?western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp) and the Neoglacial period (ca. 4000 a bp). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity.
voir la liste complète
Aucun projet disponible pour le moment
Marianne Vogel, Adam Ali, Hugo Asselin, Sabrina Leclercq, Cécile Latapy, Sébastien Joannin, Yves Bergeron. Histoire des paléo-îles du lac proglaciaire Ojibway
(Abitibi, Québec)
premières étapes de la végétation 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Adam Ali Les feux dans les écosystèmes boréaux : causes et conséquences Midi-foresterie (2021-10-26)
Marianne Vogel, Hugo Asselin, Adam Ali, Yves Bergeron, Sébastien Joannin. L'histoire des paléo-îles du lac proglaciaire Ojibway (Abitibi) 21e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2019-11-30)
Bi-Tchoko Vincent Evrard Kouadio, Yves Bergeron, Olivier Blarquez, Christelle Hely-Alleaume, Adam Ali. Affiche 9
Des outils pour caractériser les différents types de pessières afin de reconstruire et de comprendre leur dynamique à long terme au Canada. 20e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Lorrainville, Québec. (2018-11-30)
Samira Ouarmim, Hugo Asselin, Adam Ali, Christelle Hely-Alleaume, Yves Bergeron. 8000 ans d'histoire et très peu de feux en forêt boréale mixte 14e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2012-11-29)
Adam Ali Feux et dynamiques post-glaciaires de Abies balsamea dans la forêt boréale coniférienne (Nord du Québec) : analyses à haute résolution de charbons de bois et de macrorestes végétaux. Feux et dynamiques post-glaciaires de Abies balsam (2006-02-28)