Tuomas Aakala, Cécile C. Remy, Dominique Arseneault, Hubert Morin, Martin-Philippe Girardin, Fabio Gennaretti, Lionel Navarro, Niina Kuosmanen, Adam A. Ali, Étienne Boucher, Normunds Stivrins, Heikki Seppä, Yves Bergeron, Miguel Montoro Girona. Millennial-Scale Disturbance History of the Boreal Zone 2023. In: Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y. (eds) Boreal Forests in the Face of Climate Change. Advances in Global Change Research, vol 74. Springer, Cham. 53
DOI : 10.1007/978-3-031-15988-6_2
Long-term disturbance histories, reconstructed using diverse paleoecological tools, provide high-quality information about pre-observational periods. These data offer a portrait of past environmental variability for understanding the long-term patterns in climate and disturbance regimes and the forest ecosystem response to these changes. Paleoenvironmental records also provide a longer-term context against which current anthropogenic-related environmental changes can be evaluated. Records of the long-term interactions between disturbances, vegetation, and climate help guide forest management practices that aim to mirror “natural” disturbance regimes. In this chapter, we outline how paleoecologists obtain these long-term data sets and extract paleoenvironmental information from a range of sources. We demonstrate how the reconstruction of key disturbances in the boreal forest, such as fire and insect outbreaks, provides critical long-term views of disturbance-climate-vegetation interactions. Recent developments of novel proxies are highlighted to illustrate advances in reconstructing millennial-scale disturbance-related dynamics and how this new information benefits the sustainable management of boreal forests in a rapidly changing climate.
Feng Wang, Dominique Arseneault, Étienne Boucher, Fabio Gennaretti, Shulong Yu, Tongwen Zhang. Tropical volcanoes synchronize eastern Canada with Northern Hemisphere millennial temperature variability. 2022. Nature - Communications 13:5042
DOI : 10.1038/s41467-022-32682-6
Although global and Northern Hemisphere temperature reconstructions are coherent with climate model simulations over the last millennium, reconstructed temperatures tend to diverge from simulations at smaller spatial scales. Yet, it remains unclear to what extent these regional peculiarities reflect region-specific internal climate variability or inadequate proxy coverage and quality. Here, we present a high-quality, millennial-long summer temperature reconstruction for northeastern North America, based on maximum latewood density, the most temperature-sensitive tree-ring proxy. Our reconstruction shows that a large majority (31 out of 44) of the coldest extremes can be attributed to explosive volcanic eruptions, with more persistent cooling following large tropical than extratropical events. These forced climate variations synchronize regional summer temperatures with hemispheric reconstructions and simulations at the multidecadal time scale. Our study highlights that tropical volcanism is the major driver of multidecadal temperature variations across spatial scales.
Mathilde Marchais, Yves Bergeron, Dominique Arseneault. The rapid expansion of Populus tremuloides due to
anthropogenic disturbances in eastern Canada. 2022. Can. J. For. Res. 52(7):991-1001
DOI : 10.1139/cjfr-2022-0082
In the context of global changes, the future dynamics of trembling aspen (Populus tremuloides Michx.) are uncertain in the middle of its range. An increase in climate-related mortality could occur, but the modification of disturbance regimes could also favor its expansion. In this study, we document trembling aspen dynamics over 40 years at the scale of a boreal forest landscape (10 930 km²), as well as the role of disturbances in these dynamics. The results indicate that trembling aspen has experienced a substantial expansion over the last four decades (+102% occurrence), particularly between 1987 and 1997 (+70.9% occurrence). Nevertheless, these dynamics vary both spatially and temporally, with for example a phase of weak decline since 1997 (−5.9% occurrence). Anthropogenic disturbances, particularly clear-cutting, have played a major role in the expansion of trembling aspen. This expansion could influence the response of ecosystems to climate change, by modifying both fire and insect outbreak activities.
Ellis Q. Margolis, Christopher H. Guiterman, Raphaël Chavardes, Jonathan D. Coop, Kelsey Copes-Gerbitz, Denyse A. Dawe, Donald A. Falk, James D. Johnston, Evan Larson, Hang Li, Joseph M. Marschall, Cameron E. Naficy, Adam T. Naito, Marc-André Parisien, Sean A. Parks, Jeanne Portier, Helen M. Poulos, Kevin M. Robertson, James H. Speer, Michael Stambaugh, Thomas W. Swetnam, Alan J. Tepley, Ichchha Thapa, Craig D. Allen, Yves Bergeron, Lori D. Daniels, Peter Z. Fulé, David Gervais, Martin-Philippe Girardin, Grant L. Harley, Jill E. Harvey, Kira M. Hoffman, Jean M. Huffman, Matthew D. Hurteau, Lane B. Johnson, Charles W. Lafon, Manuel K. Lopez, R. Stockton Maxwell, Jed Meunier, Malcolm North, Monica T. Rother, Micah R. Schmidt, Rosemary L. Sherriff, Lauren A. Stachowiak, Alan Taylor, Erana J. Taylor, Valérie Trouet, Miguel L. Villarreal, Larissa L. Yocom, Karen B. Arabas, Alexis H. Arizpe, Dominique Arseneault, Alicia Azpeleta Tarancón, Christopher Baisan, Erica Bigio, Franco Biondi, Gabriel D. Cahalan, Anthony Caprio, Julián Cerano-Paredes, Brandon M. Collins, Daniel C. Dey, Igor Drobyshev, Calvin Farris, M. Adele Fenwick, William Flatley, M. Lisa Floyd. The North American tree-ring fire-scar network. 2022. Ecosphere 13(7):e4159
DOI : 10.1002/ecs2.4159
Abstract Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scar network (NAFSN), which contains 2562 sites, >37,000 fire-scarred trees, and covers large parts of North America. We investigate the NAFSN in terms of geography, sample depth, vegetation, topography, climate, and human land use. Fire scars are found in most ecoregions, from boreal forests in northern Alaska and Canada to subtropical forests in southern Florida and Mexico. The network includes 91 tree species, but is dominated by gymnosperms in the genus Pinus. Fire scars are found from sea level to >4000-m elevation and across a range of topographic settings that vary by ecoregion. Multiple regions are densely sampled (e.g., >1000 fire-scarred trees), enabling new spatial analyses such as reconstructions of area burned. To demonstrate the potential of the network, we compared the climate space of the NAFSN to those of modern fires and forests; the NAFSN spans a climate space largely representative of the forested areas in North America, with notable gaps in warmer tropical climates. Modern fires are burning in similar climate spaces as historical fires, but disproportionately in warmer regions compared to the historical record, possibly related to under-sampling of warm subtropical forests or supporting observations of changing fire regimes. The historical influence of Indigenous and non-Indigenous human land use on fire regimes varies in space and time. A 20th century fire deficit associated with human activities is evident in many regions, yet fire regimes characterized by frequent surface fires are still active in some areas (e.g., Mexico and the southeastern United States). These analyses provide a foundation and framework for future studies using the hundreds of thousands of annually- to sub-annually-resolved tree-ring records of fire spanning centuries, which will further advance our understanding of the interactions among fire, climate, topography, vegetation, and humans across North America.
Ann Delwaide, Claude Lavoie, Serge Payette, Hugo Asselin, Dominique Arseneault. A 2233-year tree-ring chronology of subarctic black spruce (Picea mariana): growth forms response to long-term climate change. 2021. Ecoscience 27(3-4): 399-419
DOI : 10.1080/11956860.2021.1952014
We present the longest tree-ring chronology to date in northeastern North America (2233 years; 227 BCE – 2005 CE), resulting from several research projects conducted at the subarctic treeline in northern Quebec. This raw chronology of tree-ring width includes 464 black spruce (Picea mariana (Mill.) B.S.P.) shrubs (krummholz) growing in wetlands and preserved within peatlands. An indexed series of 152 erect black spruce trees that have lived in wetlands is also presented, covering the period 216 BCE to 1619 CE. We compared these chronologies to a tree-ring series including 116 black spruce trees and krummholz having grown on well-drained lichen woodlands over the period 1304–2000 CE. These chronologies highlight the major climatic periods of the last two millennia. Floating chronologies dating from 2500 to 3500 years ago were also developed from trees preserved in frozen peat. Growth rings from this period are much wider than those of the last 2233 years, suggesting warm climatic conditions and permafrost-free peatlands during the transition from mid- to late Holocene. The three subarctic chronologies presented here underscore the relevance and usefulness of tree growth rings and growth forms as ecological tools to assess the influence of climate on subarctic ecosystems.
Ulf Büntgen, Kathy Allen, Kevin J. Anchukaitis, Étienne Boucher, Achim Bräuning, Snigdhansu Chatterjee, Paolo Cherubini, Olga V. Churakova, Dominique Arseneault, Christophe Corona, Fabio Gennaretti, Jussi Grießinger, Sebastian Guillet, Joël Guiot, Björn Gunnarson, Samuli Helama, Philipp Hochreuther, Malcolm K. Hughes, Peter Huybers, Wolfgang J.-H. Meier, Paul J. Krusic, Josef Ludescher, Alexander V. Kirdyanov, Vladimir S. Myglan, Kurt Nicolussi, Clive Oppenheimer, Frederick Reinig, Matthew W. Salzer, Kristina Seftigen, Alexander R. Stine, Markus Stoffel, Scott St. George, Ernesto Tejedor, Aleyda Trevino, Valérie Trouet, Jianglin Wang, Rob Wilson, Bao Yang, Guobao Xu, Jan Esper. The influence of decision-making in tree ring-based climate reconstructions 2021. Nature - Communications 12, 3411
DOI : 10.1038/s41467-021-23627-6
Tree-ring chronologies underpin the majority of annually-resolved reconstructions of Common Era climate. However, they are derived using different datasets and techniques, the ramifications of which have hitherto been little explored. Here, we report the results of a double-blind experiment that yielded 15 Northern Hemisphere summer temperature reconstructions from a common network of regional tree-ring width datasets. Taken together as an ensemble, the Common Era reconstruction mean correlates with instrumental temperatures from 1794–2016 CE at 0.79 (p < 0.001), reveals summer cooling in the years following large volcanic eruptions, and exhibits strong warming since the 1980s. Differing in their mean, variance, amplitude, sensitivity, and persistence, the ensemble members demonstrate the influence of subjectivity in the reconstruction process. We therefore recommend the routine use of ensemble reconstruction approaches to provide a more consensual picture of past climate variability.
Victor Danneyrolles, Mark Vellend, Sébastien Dupuis, Yan Boucher, Jason Laflamme, Yves Bergeron, Gabriel Fortin, Marie Leroyer, André de Römer, Raphaëlle Terrail, Dominique Arseneault. Scale-dependent changes in tree diversity over more than a century in eastern Canada: Landscape diversification and regional homogenization. 2021. Journal of Ecology 109(1):273-283
DOI : 10.1111/1365-2745.13474
- A better understanding of how disturbance impacts tree diversity at different scales is essential for our ability to conserve and manage forest ecosystems in the context of global changes. Here we test the impacts of land use?related disturbances on tree diversity since the 19th century across a broad region (>150,000 km2) of northern temperate forests in eastern Canada.
- We used a large and unique dataset of early land surveys conducted during the 19th century (>130,000 species lists), along with modern forest inventories (>80,000 plots), to analyse long?term changes in taxonomic and functional tree diversity at several scales (grid cell resolutions ranging from 12.5 to 1,600 km2; we refer to one grid cell as a ‘landscape’).
- Our results show that land use?related disturbances have led simultaneously to (a) increased diversity within landscapes and a (b) homogenization at the regional scale (i.e. decreased composition dissimilarity among landscapes). These trends were found for both taxonomic diversity and functional diversity, with temporal changes more pronounced for taxonomic than functional diversity. We also found an increase over time in the strength of correlations between environmental variables and diversity both within and among landscapes.
- Synthesis. Our results support the idea that human?induced impacts on biodiversity are strongly scale?dependent and not necessarily associated with biodiversity loss. This highlights possible ways that human?driven changes in tree diversity might impact forest resistance and resilience to future global changes.
Ulf Büntgen, Étienne Boucher, Olga V. Churakova (Sidorova), Alan Crivellaro, Dominique Arseneault, Fabio Gennaretti, Malcolm K. Hughes, Alexander V. Kirdyanov, Lara Klippel, Paul J. Krusic, Hans W. Linderholm, Fredrik C. Ljungqvist, Josef Ludescher, Michael McCormick, Vladimir S. Myglan, Kurt Nicolussi, Alma Piermattei, Clive Oppenheimer, Frederick Reinig, Michael Sigl, Eugene A. Vaganov, Jan Esper. Prominent role of volcanism in Common Era climate variability and human history. 2020. Dendrochronologia 64:125757
DOI : 10.1016/j.dendro.2020.125757
Climate reconstructions for the Common Era are compromised by the paucity of annually-resolved and absolutely-dated proxy records prior to medieval times. Where reconstructions are based on combinations of different climate archive types (of varying spatiotemporal resolution, dating uncertainty, record length and predictive skill), it is challenging to estimate past amplitude ranges, disentangle the relative roles of natural and anthropogenic forcing, or probe deeper interrelationships between climate variability and human history. Here, we compile and analyse updated versions of all the existing summer temperature sensitive tree-ring width chronologies from the Northern Hemisphere that span the entire Common Era. We apply a novel ensemble approach to reconstruct extra-tropical summer temperatures from 1 to 2010 CE, and calculate uncertainties at continental to hemispheric scales. Peak warming in the 280s, 990s and 1020s, when volcanic forcing was low, was comparable to modern conditions until 2010 CE. The lowest June–August temperature anomaly in 536 not only marks the beginning of the coldest decade, but also defines the onset of the Late Antique Little Ice Age (LALIA). While prolonged warmth during Roman and medieval times roughly coincides with the tendency towards societal prosperity across much of the North Atlantic/European sector and East Asia, major episodes of volcanically-forced summer cooling often presaged widespread famines, plague outbreaks and political upheavals. Our study reveals a larger amplitude of spatially synchronized summer temperature variation during the first millennium of the Common Era than previously recognised.
Sébastien Dupuis, Yan Boucher, Jason Laflamme, Gabriel Fortin, Victor Danneyrolles, Marie Leroyer, Raphaëlle Terrail, Yves Bergeron, Dominique Arseneault. Utilisation couplée des archives d’arpentage
et de la classification écologique pour affiner
les cibles de composition dans l’aménagement
écosystémique des forêts tempérées du Québec. 2020. Mémoire de recherche forestière, Direction de la recherche forestière no 183. 36 p.
Mathilde Marchais, Dominique Arseneault, Yves Bergeron. Composition Changes in the Boreal Mixedwood Forest of Western Quebec Since Euro-Canadian Settlement. 2020. Frontiers in ecology and evolution 8:126
DOI : 10.3389/fevo.2020.00126
Settlement of eastern North America has generated significant modifications in forest composition. In regions highly influenced by human activity, historical ecology can be used to reconstruct pre-settlement forest composition. In this study, we reconstruct the composition of the pre-settlement (1909–1937) forest of a 4,134 km2 sector of the boreal mixedwood forest using early land survey archives. The pre-settlement composition was compared with modern composition using recent eco-forest inventories (1980–2008), and the influence of surficial deposits on compositional changes assessed. During the pre-settlement period, the landscape was primarily dominated by spruce, which was evenly distributed across surficial deposit types. Trembling aspen, although widespread, rarely dominated stands. In contrast, the present-day landscape is dominated by trembling aspen, notably on clay and till deposits. In general, conifers have undergone a severe reduction in frequency. Spruce and pine forests are today mainly restricted to organic and sandy surficial deposits, respectively, compared to their historical frequencies. Composition changes observed in the boreal mixedwood forest of western Quebec are essentially the results of fires and forest harvesting, but surficial deposits have affected the current abundance and spatial distribution of the different taxa. In the context of sustainable forest management, considerable effort should be deployed to restore conifer dominance in the region, notably on the fertile deposits that appear particularly susceptible to composition changes.
voir la liste complète
Samuel Bouchut, Dominique Arseneault, Fabio Gennaretti. Anatomie des cernes de bois subfossiles pour étudier le climat passé de la taïga du Québec 16e colloque annuel du CEF, Université de Montréal (2023-05-08)
Pierre Grondin, Andréane Garant, Julien Beguin, Amira Fetouab , Maisa De Noronha, Dominique Arseneault. Forêts paludifiées, sols et changements climatiques Rendez-vous de la connaissance en aménagement forestier durable (2022-04-05)
Nathan Egande, Dominique Arseneault, Yves Bergeron. Reconstitution historique de la composition des forêts préindustrielles boréales mixtes de l'Ouest du Québec 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Jeanne Portier, Sylvie Gauthier, Yves Bergeron, Alain Leduc, Dominique Arseneault. Le régime des feux diffère-t-il de part et d'autre de la limite nordique des forêts attribuables du Québec ? 17e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2015-12-02)
Victor Danneyrolles, Yves Bergeron, Dominique Arseneault. Les forêts des arpenteurs du XIXe siècle : un état de référence pour la composition forestière au Témiscamingue 17e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2015-12-02)
Dominique Arseneault Dominique Arseneault Séminaire Ouranos: (2015-05-20)
Dominique Arseneault Changements climatiques, feux et forêt boréale: 5000 ans d'histoire à l'échelle d'un site. Changements climatiques, feux et forêt boréale: 50 (2003-10-14)
Dominique Arseneault, Luc Sirois, Yan Boucher. Enjeux d'aménagement écosystémique dans la sapinière à bouleau jaune de l'Est (Bas-Saint-Laurent) 74ième congrès annuel de l’ACFAS, Colloque C-643 Définition des enjeux régionaux dans la mise en place de l’aménagement écosystemique des forêts du Québec. Université McGill, Montréal, Québec, Canada.