Nils Ambec, Yves Bergeron, Nicole J. Fenton. Plant community and climate differ between former islands
and submerged hills by proglacial lake Ojibway in eastern
boreal Canada. 2023. Biodiversity and Conservation Online first
DOI : 10.1007/s10531-023-02572-4
Rare habitats result from the geochemistry, history, or topography of the environment. They shelter regionally rare species (i.e., those with only a few mentions) and are threatened by global changes and human activities. On the clay plains of western Québec, the scattered highest hills emerged from the proglacial lake Ojibway (10,200–8200 BP) as islands and were potentially colonised 2000 years before their present surroundings. This study aims to determine if the effect of this earlier colonisation is still visible today in comparison with nearby formerly submerged hills. To do so, vascular plants and bryophytes were sampled for all habitats (i.e., old-growth forest, wet rock, and dry rock) at matched pairs of formerly emerged and submerged hills with known disturbance histories. Hourly temperature and relative humidity were recorded the top and bottom of each hill for one year. We found that former islands housed richer bryophyte communities than formerly submerged hills while the opposite was true for vascular plants. Old-growth forest was the richest habitat. Although hilltop temperatures are higher than those of the plains, the former islands that made up the higher hills were colder and wetter than the smaller, formerly submerged hills. This did not affect the diversity of bryophytes, but it did have an impact on the diversity of most vascular plant life forms. We believe that the rugged higher hills create more microclimatic heterogeneity and are fire and climate refugia. Disturbances explains a higher vascular plant diversity on lower hills. We conclude that no former island effect exists as such, but rather a complex climate and fire refugia resulting of a more rugged topography in former islands that allowed old-growth dependent species to accumulate through millennia in the right habitat structure. These results give new perspectives to discriminate apparently common habitats.
Juanita Rodriguez-Rodriguez, Nicole J. Fenton, Yves Bergeron, Steven Kembel. Soil and tree phyllosphere microbial communities differ
between coniferous and broadleaf deciduous boreal forests. 2023. Plant and soil.
DOI : 10.1007/s11104-023-05959-y
Natural and anthropogenic causes have produced changes in tree dominance from coniferous to broadleaf deciduous forests, generating shifts in litter inputs and plant understory composition. The impact of changes in canopy-associated factors on belowground microbial communities remain poorly understood. The objective of this study was to better understand how abiotic and biotic factors in black spruce and trembling aspen forests shape soil microbial community structure.
Xiangbo Yin, Christine Martineau, Nicole J. Fenton. Synergistic effects in mine offsite landscapes: Predicted ecosystem shifts could exacerbate mining effects on bryophyte community structure. 2022. Ecological Indicator 144:109555
DOI : 10.1016/j.ecolind.2022.109555
Global change is shifting ecosystem type relative abundance in boreal forests, while the green energy transition results in increased mining activities around the globe. The interaction and consequent effects of these two trends on biodiversity have not been examined in depth. Bryophytes species can be used as indicators to measure these effects because they play key ecological roles in boreal forests. We identified and evaluated the interaction between ecosystem type (i.e., coniferous, deciduous, mixed forest and open canopy) and mining on microhabitat scale bryophyte diversity and composition in 1-km landscapes surrounding six mine sites at different stages of the mining lifecycle in the Canadian boreal forest. Irrespective of microhabitat type, the combined effects of ecosystem type and mining stage were interactive on bryophytes. Bryophyte richness and community composition were negatively affected by offsite effects of mines in only deciduous and mixed forests. The interacted effects on bryophyte richness mainly occurred on the ground r microhabitats. We also found that deciduous, mixed forests (coniferous forest as a reference) and mines had a negative impact on the abundance of feather mosses and sphagna. Furthermore, indicator species were identified for areas affected by mines (Pohlia nutans and Dicranum polysetum) and for control areas (Sphagnum angustifolium and Plagiomnium cuspidatum). Our results suggest the predicted ecosystem shifts with global changes, from coniferous to deciduous forests, could potentially increase the effects of mining on forest ecosystem resistance through the changes in bryophyte community structure. Adding microhabitats (i.e., adding coarse woody debris) near mine sites is a potential strategy to maintain species richness. Collectively, these findings advance our understanding of how mining affects biodiversity and highlight the importance of considering mine offsite landscapes in future environmental evaluations of development projects in the context of global changes.
Maxence Martin, Yoan Paillet, Laurent Larrieu, Christel C. Kern, Patricia Raymond, Nicole J. Fenton, Pierre Drapeau. Tree-Related Microhabitats Are Promising Yet Underused Tools for Biodiversity and Nature Conservation: A Systematic Review for International Perspectives 2022. Frontiers in forests and global change 5:818474
DOI : 10.3389/ffgc.2022.818474
Sustainable management of forest ecosystems requires the use of reliable and easy to implement biodiversity and naturalness indicators. Tree-related microhabitats (TreMs) can fulfill these roles as they harbor specialized species that directly or indirectly depend on them, and are generally more abundant and diverse in natural forests or forests unmanaged for several decades. The TreM concept is however still recent, implying the existence of many knowledge gaps that can challenge its robustness and applicability. To evaluate the current state of knowledge on TreMs, we conducted a systematic review followed by a bibliometric analysis of the literature identified. A total of 101 articles constituted the final corpus. Most of the articles (60.3%) were published in 2017 or after. TreM research presented a marked lack of geographical representativity, as the vast majority (68.3%) of the articles studied French, German or Italian forests. The main themes addressed by the literature were the value of TreMs as biodiversity indicators, the impact of forest management on TreMs and the factors at the tree- and stand-scales favoring TreMs occurrence. Old-growth and unmanaged forests played a key role as a “natural” forest reference for these previous themes, as TreMs were often much more abundant and diverse compared to managed forests. Arthropods were the main phylum studied for the theme of TreMs as biodiversity indicators. Other more diverse themes were identified, such as restoration, remote sensing, climate change and economy and there was a lack of research related to the social sciences. Overall, current research on TreMs has focused on assessing its robustness as an indicator of biodiversity and naturalness at the stand scale. The important geographical gap identified underscores the importance of expanding the use of the TreMs in other forest ecosystems of the world. The notable efforts made in recent years to standardize TreM studies are an important step in this direction. The novelty of the TreM concept can partially explain the thematic knowledge gaps. Our results nevertheless stress the high potential of TreMs for multidisciplinary research, and we discuss the benefits of expanding the use of TreMs on a larger spatial scale.
Mariano Feldman, Rémi Chevalier, Nicole J. Fenton, Marc Mazerolle, Louis Imbeau. Eating frogs in the north: attempted predation of Tringa melanoleuca on boreal Lithobates adult frogs (Anura: Ranidae). 2022. Herpetology notes 15:399-402
Françoise Cardou, Alison D. Munson, Laura Boisvert-Marsh, Madhur Anand, André Arsenault, F. Wayne Bell, Yves Bergeron, Isabelle Boulangeat, Nicole J. Fenton, Sylvain Delagrange, Dominique Gravel, Benoît Hamel, François Hébert, Jill F. Johnstone, Bright B. Kumordzi, S. Ellen Macdonald, Azim Mallik, Anne C. S. McIntosh, Jennie R. McLaren, Christian Messier, Dave Morris, Bill Shipley, Luc Sirois, Nelson Thiffault, Isabelle Aubin. Above-and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America 2022. Journal of Ecology 110(7):1590-1605
DOI : 10.1111/1365-2745.13894
Intraspecific trait variability (ITV) provides the material for species' adaptation to environmental changes. To advance our understanding of how ITV can contribute to species' adaptation to a wide range of environmental conditions, we studied five widespread understorey forest species exposed to both continental-scale climate gradients, and local soil and disturbance gradients. We investigated the environmental drivers of between-site leaf and root trait variation, and tested whether higher between-site ITV was associated with increased trait sensitivity to environmental variation (i.e. environmental fit). We measured morphological (specific leaf area: SLA, specific root length: SRL) and chemical traits (Leaf and Root N, P, K, Mg, Ca) of five forest understorey vascular plant species at 78 sites across Canada. A total of 261 species-by-site combinations spanning ~4300 km were sampled, capturing important abiotic and biotic environmental gradients (neighbourhood composition, canopy structure, soil conditions, climate). We used multivariate and univariate linear mixed models to identify drivers of ITV and test the association of between-site ITV with environmental fit. Between-site ITV of leaf traits was primarily driven by canopy structure and climate. Comparatively, environmental drivers explained only a small proportion of variability in root traits: these relationships were trait specific and included soil conditions (Root P), canopy structure (Root N) and neighbourhood composition (SRL, Root K). Between-site ITV was associated with increased environmental fit only for a minority of traits, primarily in response to climate (SLA, Leaf N, SRL). Synthesis. By studying how ITV is structured along environmental gradients among species adapted to a wide range of conditions, we can begin to understand how individual species might respond to environmental change. Our results show that generalisable trait–environment relationships occur primarily aboveground, and only accounted for a small proportion of variability. For our group of species with broad ecological niches, variability in traits was only rarely associated with higher environmental fit, and primarily along climatic gradients. These results point to promising research avenues on the various ways in which trait variation can affect species' performance along different environmental gradients.
Maxence Martin, Alain Leduc, Miguel Montoro Girona, Yves Bergeron, Nicole J. Fenton, Osvaldo Valeria. Irregular forest structures originating after fire: An opportunity to promote alternatives to even-aged management in boreal forests 2022. Journal of Applied Ecology 59(7):1792-1803
DOI : 10.1111/1365-2664.14186
Even-aged silviculture based on short-rotation clearcuts had severely altered boreal forests. Silvicultural alternatives (e.g. continuous cover or retention forestry) have the potential to restore and protect the habitats and functions of boreal forests. These alternatives are however often restricted to structurally complex old-growth forest, which are particularly threatened by anthropogenic disturbances. Increasing the use of alternatives to even-aged silviculture in early-successional stands could help recruit more structurally complex forests, with characteristics closer to the old-growth. In this article, we therefore evaluate the potential for silvicultural alternatives to even-aged management in boreal forests that burned less than a century ago.
We analysed 1085 field plots in a 243,000 km2 area situated in the boreal forest of eastern Canada. These plots burned 30–100 years before the survey and had not been subjected to previous or subsequent anthropogenic disturbance; they hence represent young primary forests. The main patterns of tree diameter distribution variation within the plots were identified using k-means clustering. Stand structure, tree species composition and environmental variables that most explained the differences among the clusters were identified with a random forest model, and then compared using Kruskal–Wallis and Fisher's exact tests.
The majority (>75%) of the plots presented an irregular structure of stem diameters (i.e. non-normally distributed, with many small diameter trees). The understorey was generally dominated by black spruce (Picea mariana [Mill.] BSP), a shade-tolerant species. Irregular structures were observed in both forests of high and low productivity, implying that different processes (e.g. early regeneration, variable tree growth) can lead to observed early irregular structure. Regular structures were generally characterized by a higher productivity and abundance in hardwood species compared to the irregular structures.
Synthesis and applications. Many boreal forests of eastern Canada progress towards an irregular structure in the decades following the last stand-replacing fire. A substantial part of these early-successional forests may be suitable for alternatives to even-aged silviculture that better maintains habitats and functions of preindustrial boreal forests.
Juanita Rodriguez-Rodriguez, Yves Bergeron, Steven Kembel, Nicole J. Fenton. Dominance of coniferous and broadleaved trees drives
bacterial associations with boreal feather mosses. 2022. Environmental microbiology 24(8):3517-3528
DOI : 10.1111/1462-2920.16013
The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of the bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (β-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system.
Maurane Bourgouin-Couture, Osvaldo Valeria, Nicole J. Fenton. Predictive mapping of bryophyte diversity associated with mature forests using LiDAR-derived indices in a strongly managed landscape. 2022. Ecological Indicator 136:108585
DOI : 10.1016/j.ecolind.2022.108585
Recovery of bryophyte diversity following silvicultural treatments depends upon the reestablishment of favorable microhabitats and microclimatic conditions. Without sources of propagules (reproductive structures) within the managed landscape, however, even optimal habitat conditions would not be sufficient to ensure bryophyte diversity. To identify sources of propagules and ensure their protection, we used indices that were derived from a Digital Elevation Model (DEMs) and an airborne point cloud (LiDAR; Light Detection and Ranging) as explanatory variables to predict bryophyte biodiversity. Bryophytes were collected in the intensively managed Black Brook District of New Brunswick, Canada, in eight mature managed and unmanaged forest types (n = 38). Our results show a strong bryophyte community gradient between wetter stands (Cedar, riparian zone and Spruce-Fir) and drier stands (Tolerant Harwood and Plantation) forming two distinctive groups. Indices explaining bryophyte composition and richness were related to moisture (closest distance to a stream), canopy (canopy relief ratio, canopy closure and density) and microtopography (Topographic Position Index). Models obtained from these indices explained 75% of bryophyte composition and predicted composition with a certainty of 71% The predominance of the closest distance to a stream in our model reinforces the great importance of buffer along the hydrological network. Buffers represent a substantial propagule source for the landscape and notably increase its ecological connectivity. Although wetter sites had greater richness, the completely different composition find at drier sites suggest that biodiversity management efforts to maintain bryophytes should not be restricted to wetter stands. Our model demonstrates the potential of airborne LiDAR-derived indices as surrogates for field data in estimating and mapping bryophyte compositions to understand the variation in diversity across the managed landscape. This model can be used as a dynamic tool to target areas that represent the overall bryophyte diversity of the managed landscape to ensure protection of propagule sources and favors reestablishment.
Carlos Cerrejon Lozano, Jesús Muñoz, Osvaldo Valeria, Nicole J. Fenton. Small but visible: Predicting rare bryophyte distribution and richness patterns using remote sensing-based ensembles of small models. 2022. PlosOne 17(1):e0260543
DOI : 10.1371/journal.pone.0260543
In Canadian boreal forests, bryophytes represent an essential component of biodiversity and play a significant role in ecosystem functioning. Despite their ecological importance and sensitivity to disturbances, bryophytes are overlooked in conservation strategies due to knowledge gaps on their distribution, which is known as the Wallacean shortfall. Rare species deserve priority attention in conservation as they are at a high risk of extinction. This study aims to elaborate predictive models of rare bryophyte species in Canadian boreal forests using remote sensing-derived predictors in an Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based prediction accuracy can be achieved for rare bryophyte species despite their low number of occurrences. We also assess if there is a spatial correspondence between rare and overall bryophyte richness patterns. The study area is located in western Quebec and covers 72,292 km2. We selected 52 bryophyte species with <30 occurrences from a presence-only database (214 species, 389 plots in total). ESMs were built from Random Forest and Maxent techniques using remote sensing-derived predictors related to topography and vegetation. Lee’s L statistic was used to assess and map the spatial relationship between rare and overall bryophyte richness patterns. ESMs yielded poor to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs provided better predictions for the rarest bryophytes. Likewise, our study revealed a spatial concordance between rare and overall bryophyte richness patterns in different regions of the study area, which have important implications for conservation planning. This study demonstrates the potential of remote sensing for assessing and making predictions on inconspicuous and rare species across the landscape and lays the basis for the eventual inclusion of bryophytes into sustainable development planning.
voir la liste complète
Nicole J. Fenton Développer un outil de planification écologique afin d’aider à la conservation d’une richesse méconnue, les tourbières de la région Eeyou Istchee Baie-James Colloques du SCF-CFL (2023-03-09)
Julie Arseneault, Nicole J. Fenton. Lancement du nouveau livre de bryologie Société québécoise de bryologie (2022-12-08)
Juanita Carolina Rodriguez, Evick Mestre, Mélanie Jean, Nicole J. Fenton, Steven Kembel, Yves Bergeron. La dominance de la canopée comme facteur déterminant des plantes de sous-bois : Conifères versus feuillus! 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Clémence Boivin, Nicole J. Fenton, Xavier Cavard, Mebarek Lamara. Est-ce possible de favoriser à la fois la biodiversité et la séquestration du carbone ? 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Enrique Hernandez Rodriguez, Juan Carlos Villareal, Nicole J. Fenton. Diminutive forest plants unveil how to organize landscape for biodiversity conservation 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Nils Ambec, Yves Bergeron, Nicole J. Fenton. Les communautés végétales des forêts de plaine et de colline diffèrent en Abitibi 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Mialintsoa Aroniaina Randriamananjara, Nicole J. Fenton, Xavier Cavard, Mélanie Jean, Annie DesRochers. Diversité végétale dans les plantations de peupliers hybrides en plantation pure et mixte 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Félix Gery, Nicole J. Fenton, Annie DesRochers, Fabio Gennaretti. Stratégie de végétalisation, à partir de bryophytes, d’affleurements rocheux dégradés aux alentours de Rouyn-Noranda 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Manon Carboni, Nicole J. Fenton, Yves Bergeron. Dynamique des communautés végétales du sous-bois de la forêt boréale mixte de l’ouest du Québec 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Maxime Thomas, Hugo Asselin, Mebarek Lamara, Nicole J. Fenton. Effet des perturbations humaines sur les propriétés médicinales de R. groenlandicum 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Deanna Holt-Schmitt, Nicole J. Fenton. From lake-effect to logs : The Diversity of bryophytes around Lake Superior 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Rémi Boisvert, Nicole J. Fenton. Déterminants de la biodiversité des communautés de macro-lichens le long d’un gradient climatique sur la côte nord du lac Supérieur (Ontario) 24e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-11-22)
Mialintsoa Aroniaina Randriamananjara, Nicole J. Fenton, Xavier Cavard, Mélanie Jean, Annie DesRochers. Diversité végétale et fonctionnelle dans les plantations mixtes de peupliers hybrides et les monocultures 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-29)
Rémi Boisvert, Nicole J. Fenton. Déterminants de la biodiversité des communautés de macro-lichens le long d’un gradient climatique sur la côte nord du lac Supérieur (Ontario) 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-28)
Manon Carboni, Nicole J. Fenton, Yves Bergeron. Dynamique des communautés végétales du sous-bois de la forêt boréale mixte de l'ouest du Québec. 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-28)
Clémence Boivin, Xavier Cavard, Nicole J. Fenton, Mebarek Lamara. Foresterie multifonctionnelle : est-il possible de favoriser à la fois la biodiversité et la séquestration du carbone ? 15e colloque annuel du CEF, Université de Sherbrooke, Québec (2022-09-28)
Maxime Thomas, Hugo Asselin, Mebarek Lamara, Nicole J. Fenton. Impact of industrial disturbances on the chemical properties of Rhododendron groenlandicum in three Indigenous communities of western Québec Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-08)
Rémi Boisvert, Nicole J. Fenton. Communautés de lichens de la côte nord du lac Supérieur (Ontario): Effet de l'interaction entre le macro-climat, la structure forestière et les substrats Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-06)
Manon Carboni, Nicole J. Fenton, Yves Bergeron. Dynamique des communautés végétales du sous-bois de la forêt boréale mixte située à l'ouest du Québec Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-06)
Marc-Frédéric Indorf, Tana Route, Yves Bergeron, Nicole J. Fenton. Vegetation community assembly patterns in boreal peatlands: using a spatial hierarchical approach Conférence annuelle de l’Association Botanique Canadienne. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2022-06-06)