Yan Boulanger, Dominique Arseneault, Annie Claude Bélisle, Yves Bergeron, Jonathan Boucher, Yan Boucher, Victor Danneyrolles, Philippe Gachon, Martin P. Girardin, Éliane Grant, Pierre Grondin, Jean-Pierre Jetté, Guillemette Labadie, Mathieu Leblond, Alain Leduc, Jesus Pascual Puigdevall, Martin-Hugues St-Laurent, Junior A. Tremblay, Kaysandra Waldron. La saison des feux de forêt 2023 au Québec : un aperçu des conditions extrêmes, des impacts, des leçons apprises et des considérations pour l’avenir 2024. Can. J. For. Res. Online first
DOI : 10.1139/cjfr-2024-0230
La saison des feux de forêt de 2023 au Québec, marquée par des conditions extrêmement chaudes et sèches, a établi de nouveaux records en brûlant 4,5 millions d'hectares. Cette situation est directement liée aux impacts persistants et en augmentation du changement climatique. Cette étude examine les conditions météorologiques exceptionnelles ayant mené aux feux et évalue leurs impacts significatifs sur le secteur forestier, la gestion des feux, les habitats du caribou boréal, et met particulièrement en lumière les répercussions profondes sur les communautés des Premières Nations. Les feux ont entraîné une baisse significative de la productivité des forêts et de l'approvisionnement en bois, submergeant les équipes de gestion des feux et nécessitant des évacuations massives. Le territoire et les communautés des Premières Nations ont été profondément affectés, confrontés à de graves problèmes de qualité de l'air et à des bouleversements considérables. Si l'impact sur l?habitat du caribou a été modeste dans l'ensemble de la province, les répercussions écologiques, économiques et sociales ont été considérables. Pour atténuer les impacts à venir des prochaines saisons de feux de forêt extrêmes, une avenue suggérée serait de modifier les pratiques d?aménagement forestier afin d'accroître la résilience et la résistance des forêts, d'adapter les structures industrielles aux nouvelles sources d'approvisionnement en bois et d'améliorer les stratégies de lutte contre les feux et la gestion des risques. De même, une approche globale
Augustin Feussom, Laurent Millet, Damien Rius, Adam A. Ali, Yves Bergeron, Pierre Grondin, Sylvie Gauthier, Olivier Blarquez. An 8500-year history of climate-fire-vegetation interactions in the eastern maritime black spruce–moss bioclimatic domain, Québec, Canada 2023. Ecoscience 1
DOI : 10.1080/11956860.2023.2292354
The eastern, maritime portion of the black spruce – moss bioclimatic domain in Québec (Canada) is characterized by large wildfires with low occurrence. However, it is still poorly understood how climate–fire interactions influenced long-term vegetation dynamics in the boreal forest of eastern Québec. The long-term historical climate–fire–vegetation interactions in this region were investigated using a multiproxy (chironomids, charcoal, and pollen) paleoecological analysis of an 8500-year sediment core. Chironomid-inferred August air temperatures suggest that the warm Holocene Thermal Maximum (HTM; between ca. 7000–4000 cal yr BP) shifted to the cooler Neoglacial period (4000 cal yr BP to present), consistent with other temperature reconstructions across Québec. The shift to spruce-moss forest dominance around 4800 cal yr BP occurred nearly a thousand years before the climatic shift to the Neoglacial period and rather coincided with a shift from frequent low-severity small fires to infrequent but large and severe fire events. Our results suggest that long-term changes in the summer temperature are probably not the main factor controlling fire and vegetation dynamics in eastern Québec. It seems that, throughout the postglacial period, summer temperatures never fell below a threshold that could have induced a significant vegetation response.
La partie orientale et maritime du domaine bioclimatique de la pessière à mousse au Québec (Canada), est caractérisée par des grands incendies à très faible occurrence. Cependant, l’effet des interactions climat-feu sur la dynamique à long terme de la végétation dans la forêt boréale de l’est du Québec est peu connu. A l’aide d’une analyse paléoécologique multiproxies (chironomes, charbon de bois, pollen) d’une carotte sédimentaire de 8500 ans, nous avons documenté les interactions à long terme entre le climat, le feu et la végétation à l’est du Québec. Les températures de l’air du mois d’août reconstituées par les chironomes suggèrent que la période chaude de l’Optimum climatique Holocène (7000-4000 ans avant aujourd’hui (AA)) a cédé place à la période froide du Néoglaciaire (4000 ans AA à l’actuel) en cohérence avec les reconstitutions climatiques réalisées ailleurs au Québec. L’établissement de la pessière à mousses il y a environ 4800 ans s’est produit près d’un millier d’années avant la transition vers le Néoglaciaire et a plutôt coïncidé avec le changement de petits incendies peu sévères fréquents, à de grands incendies sévères peu fréquents. D’après nos résultats, les changements de températures estivales ne semblent pas jouer un rôle prépondérant dans la dynamique de la végétation et des feux dans l’est du Québec. Il semble que, tout au long de la période postglaciaire, les températures estivales n’aient jamais diminué sous un seuil qui aurait induit une réponse significative de la végétation.
Emmanuel Amoah Boakye, Yves Bergeron, Igor Drobyshev, Arvin Beekharry, David Voyer, Alexis Achim, Jian-Guo Huang, Pierre Grondin, Steve Bédard, Filip Havreljuk, Fabio Gennaretti, Martin-Philippe Girardin. Recent decline in sugar maple (Acer saccharum Marsh.) growth extends to the northern parts of its distribution range in eastern Canada 2023. For. Ecol. Manage. 121304
DOI : 10.1016/j.foreco.2023.121304
Sugar maple (Acer saccharum Marshall) growth in the species’ southern range has been declining since the 1980s, putting at risk a variety of ecosystem services that the species provides. Heatwaves, drought, frosts, acidic deposition, and insect defoliation, all reducing photosynthetic activity, have been suggested to be behind the phenomenon. Because the geographic scope of previous studies on maple growth is limited to the southern temperate biome, it is not currently understood whether the same negative trends and factors affecting growth rates apply to the species in more northern regions of its distribution range. Here we used annual ring-width data of 1675 trees from a network of 21 sites in Quebec and Ontario between 45˚N and 48˚N to reconstruct maple growth and to analyze its trends and climatic drivers since 1950 C
Jordan Paillard, Pierre J.H. Richard, Olivier Blarquez, Pierre Grondin, Yves Bergeron. Postglacial establishment and expansion of marginal populations of sugar maple in western Québec, Canada: Palynological detection and interactions with fire, climate and successional processes 2023. Holocene 1237-1256
DOI : 10.1177/09596836231183065
An isolated sugar maple (Acer saccharum Marsh.) stand is located in the boreal forest of Abitibi, about 75?km beyond its present northern range limit. When did this relatively thermophilous tree species establish after ice retreat? Were its populations more abundant than now sometimes in the past? If so, when and how did they expand then retracted? How did the species persist in boreal forest over time? What could have been the role of fire on this stand? To answer those questions, we reconstructed the postglacial fire and vegetation history from three lacustrine sediment sequences distributed along a c. 180?km latitudinal transect from southern boreal forests to the northern portion of deciduous forests. From north to south, those are lakes Labelle, Chasseur and Fur. We explored a procedure based on pollen accumulation rates in order to detect the probable presence of sugar maple within the lakes? watershed. The procedure successfully indicates a sugar maple establishment c. 7800?5100 cal. BP at Fur, 5500?4400 cal. BP at Chasseur and c. 4000?2700 cal. BP at Labelle, in the north. At Fur, the subsequent sugar maple expansion happened 1 to 2 thousand years after establishment, during colder and moister climatic conditions favoring Pinus strobus L. replacement by Betula spp. c. 6000?5000 cal. BP. Sugar maple establishment, persistence or expansion is apparently not linked to a change in fire activity at Fur and Chasseur, but at Labelle, the species was more abundant during periods of shorter fire return intervals from 2000 to 500 years ago. Our study suggests that northern (Chasseur and Labelle) sugar maple establishment and possible expansion was probably more controlled by a complex interaction of inhibition and facilitation dynamics than by climate alone, a process reliant on the dominant vegetation?s composition and structure.
Pierre Grondin, Marie-Hélène Brice, Yan Boulanger, Claude Morneau, Pierre-Luc Couillard, Pierre J.H. Richard, Aurélie Chalumeau, Véronique Poirier. Ecological Classification in Forest Ecosystem Management: Links Between Current Practices and Future Climate Change in a Québec Case Study 2023. In: Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y. (eds) Boreal Forests in the Face of Climate Change. Advances in Global Change Research, vol 74. Springer, Cham. 219
DOI : 10.1007/978-3-031-15988-6_8
Climate change is expected to profoundly impact boreal forests, ranging from changes in forest composition and productivity to modifications in disturbance regimes. These climate-induced changes represent a major challenge for forest ecosystem management, as information based on ecological classification may no longer provide a straightforward guide for attaining management goals in the future. In this chapter, we examine how climate change could influence the use of ecological classification and by what means this approach can continue to be relevant for guiding the ongoing development of management practices. We address these questions by first describing ecological classification, using the example of Québec’s classification system, and then showing its importance in forest ecosystem management. Using a forest landscape in Québec as a case study, we then look at how climate change could affect boreal forest ecosystems by presenting a detailed, multistep analysis that considers climate analogs, habitat suitability, and changes in forest composition. We show that at the end of the century, the vegetation of the Abies-Betula western subdomain will not change sufficiently to resemble that of its climate analog, currently located ~500 km to the south. Changes in fire frequency and severity could significantly modify forest dynamics and composition. Consequently, the potential vegetation and the successional pathways defined under the current climate could change and follow new successional trajectories. This possible reality forces us to question some fundamental aspects of ecological classification. However, we argue that ecological classification can still provide a valuable framework for future forest management, particularly in continuing to recognize the various types of ecosystems present along toposequences. Given the changes expected in forest vegetation composition and dynamics, future variability and uncertainty must be integrated into the current stable classification units and predictable successional trajectories of ecological classification.
no result
Yan Boulanger, Jesus Pascual Puigdevall, Annie Claude Bélisle, Yves Bergeron, Marie-Hélène Brice, Louis De Grandpré, Daniel Fortin, Sylvie Gauthier, Pierre Grondin, Guillemette Labadie, Mathieu Leblond, Maryse Marchand, Tadeusz B. Splawinski, Martin-Hugues St-Laurent, Évelyne Thiffault, Junior A. Tremblay, Dominic Cyr, Stephen H. Yamasaki, . A regional integrated assessment of the impacts of climate change and of the potential adaptation avenues for Quebec’s forests. 2023. Can. J. For. Res. 53(8):556-578
DOI : 10.1139/cjfr-2022-0282
Regional analyses assessing the vulnerabilities of forest ecosystems and the forest sector to climate change are key to considering the heterogeneity of climate change impacts as well as the fact that risks, opportunities, and adaptation capacities might differ regionally. Here we provide the Regional Integrated Assessment of climate change on Quebec's forests, a work that involved several research teams and focused on climate change impacts on Quebec's commercial forests and on potential adaptation solutions. Our work showed that climate change will alter several ecological processes within Quebec's forests. These changes will result in important modifications in forest landscapes. Harvest will cumulate with climate change effects to further alter future forest landscapes, which will also have consequences on wildlife habitats (including woodland caribou habitat), avian biodiversity, carbon budget, and a variety of forest landscape values for Indigenous peoples. The adaptation of the forest sector will be crucial to mitigate the impacts of climate change on forest ecosystem goods and services and improve their resilience. Moving forward, a broad range of adaptation measures, notably through reducing harvest levels, should be explored to help strike a balance among social, ecological, and economic values. We conclude that without climate adaptation, strong negative economic and ecological impacts will likely affect Quebec's forests.
Yan Boulanger, Jesus Pascual Puigdevall, Annie Claude Bélisle, Yves Bergeron, Marie-Hélène Brice, Dominic Cyr, Louis De Grandpré, Daniel Fortin, Sylvie Gauthier, Pierre Grondin, Guillemette Labadie, Mathieu Leblond, Maryse Marchand, Tadeusz Bartek Splawinski, Martin-Hugues St-Laurent, Évelyne Thiffault, Junior Tremblay, Stephen Yamasaki. A regional integrated assessment of the impacts of climate change and of the potential adaptation avenues for Quebec’s forests. 2023. Can. J. For. Res.
DOI : 10.1139/cjfr-2022-0282
Regional analyses assessing the vulnerabilities of forest ecosystems and the forest sector to climate change are key to consider the heterogeneity of climate change impacts but also the fact that risks, opportunities and adaptation capacities might differ regionally. Here we provide the Regional Integrated Assessment of climate change on Quebec’s forests, a work that involved several research teams and that focused on climate change impacts on Quebec’s commercial forests and on potential adaptation solutions. Our work showed that climate change will alter several ecological processes within Quebec’s forests. These changes will result in important modifications in forest landscapes. Harvest will cumulate with climate change effects to further alter future forest landscapes which will also have consequences on wildlife habitat (including woodland caribou habitat), avian biodiversity, carbon budget and a variety of forest landscape values for Indigenous peoples. The adaptation of the forest sector, will be crucial to mitigate the impacts of climate change on forest ecosystem goods and services and improve their resilience. Moving forward, a broad range of adaptation measures, notably through reducing harvest levels, should be explored to help strike a balance among social, ecological and economic values. We conclude that without climate adaptation strong negative economical and ecological impacts will likely affect Quebec’s forests.
Raphaël Chavardes, Lorena Balducci, Yves Bergeron, Véronique Poirier, Pierre Grondin, Hubert Morin, Fabio Gennaretti. Greater tree species diversity and lower intraspecific
competition attenuate impacts from temperature
increases and insect epidemics in boreal forests of
western Quebec, Canada. 2022. Can. J. For. Res. 53(12):48-59
DOI : 10.1139/cjfr-2022-0114
We investigated how the surrounding environment influences the growth of dominant trees and their responses to temperature and insect epidemics in boreal forests of eastern Canada. We focused on 82 black spruce and jack pine focal trees in stands spanning a double gradient of species diversity and soil texture within a 36 km2 area of western Québec. For these trees, we compared their diameter at breast height, growth rates, temperature-growth relations, and growth during insect defoliator epidemics. We used linear models to study how surrounding tree attributes and soil properties affected the growth of focal trees. Models showed that tree growth responses and responses to temperature and insect epidemics were generally negative with higher intraspecific competition and positive with greater tree species diversity. Growth of both species benefitted from lower soil sand content. Our research offers novel insights on the potential role of the surrounding environment, notably tree competition and species diversity, in mitigating the vulnerability of eastern Canada’s boreal trees to anthropogenic climate change and insect epidemics.
Fougère Augustin, Martin-Philippe Girardin, Aurélie Terrier, Pierre Grondin, Marie-Claude Lambert, Alain Leduc, Yves Bergeron. Projected changes in fire activity and severity feedback in the spruce–Feather moss forest of western Quebec, Canada. 2022. Trees, Forests and People 8:100229
DOI : 10.1016/j.tfp.2022.100229
As a result of extreme weather conditions associated with anthropogenic climate change, fire regimes are expected to continue to change in the boreal forest over the 21st century and beyond. Consequently, changes in ecological attributes like stand composition, tree density and forest carbon stock can be expected. In the present study, we used an adjusted version of the CanFIRE model to project long-term (1971–2100) changes in burn rates, fire severity and fire-induced shifts in vegetation composition in response to anticipated scenarios of climate change, in the black spruce-feather moss subdomain of Western Quebec. The model provides decadal-scale estimates of the immediate physical effects of fire on forest communities by computing expected fire behavior and the resulting ecological effects. Changes in species composition of the forest is also computed based on mechanisms of succession in natural forest communities and fire-mediated vegetation transitions. Projections suggest an increase in potential burn rates across the study area under future weather conditions and also an overall reduction in percent tree mortality and total fuel consumption. This reduction is caused by negative feedback from vegetation composition that shifts to less-fire prone states. Although common forest communities will remain the same in the studied subdomain until 2100 (recurrence dynamics), significant losses of productive area (LPA) are projected, particularly in forest management units rich in forest communities dominated by black spruce or jack pine, as a result of regeneration failure due to very short intervals between successive fires. While remaining similar under moderate (RCP4.5) and high-end (RCP8.5) warming scenarios in all forest management units, LPA will vary from 25 to 36% of the percent cover by 2100 compared to 1970. These results provide insights to policy makers and land managers, and they attract attention to the pressing need to adjust management practices in the context of climate change.
Raphaël Chavardes, Fabio Gennaretti, Xavier Cavard, Pierre Grondin, Hubert Morin, Yves Bergeron. Role of Mixed-Species Stands in Attenuating the Vulnerability of Boreal Forests to Climate Change and Insect Epidemics. 2021. Frontiers in Plant Science 12:658880
DOI : 10.3389/fpls.2021.658880
We investigated whether stand species mixture can attenuate the vulnerability of eastern Canada’s boreal forests to climate change and insect epidemics. For this, we focused on two dominant boreal species, black spruce [Picea mariana (Mill.) BSP] and trembling aspen (Populus tremuloides Michx.), in stands dominated by black spruce or trembling aspen (“pure stands”), and mixed stands (M) composed of both species within a 36 km2 study area in the Nord-du-Québec region. For each species in each stand composition type, we tested climate-growth relations and assessed the impacts on growth by recorded insect epidemics of a black spruce defoliator, the spruce budworm (SBW) [Choristoneura fumiferana (Clem.)], and a trembling aspen defoliator, the forest tent caterpillar (FTC; Malacosoma disstria Hübn.). We implemented linear models in a Bayesian framework to explain baseline and long-term trends in tree growth for each species according to stand composition type and to differentiate the influences of climate and insect epidemics on tree growth. Overall, we found climate vulnerability was lower for black spruce in mixed stands than in pure stands, while trembling aspen was less sensitive to climate than spruce, and aspen did not present differences in responses based on stand mixture. We did not find any reduction of vulnerability for mixed stands to insect epidemics in the host species, but the non-host species in mixed stands could respond positively to epidemics affecting the host species, thus contributing to stabilize ecosystem-scale growth over time. Our findings partially support boreal forest management strategies including stand species mixture to foster forests that are resilient to climate change and insect epidemics.
Maxence Martin, Pierre Grondin, Marie-Claude Lambert, Yves Bergeron, Hubert Morin. Compared to Wildfire, Management Practices Reduced Old-Growth Forest Diversity and Functionality in Primary Boreal Landscapes of Eastern Canada. 2021. Frontiers in forests and global change 4:15
DOI : 10.3389/ffgc.2021.639397
Large primary forest residuals can still be found in boreal landscapes. Their areas are however shrinking rapidly due to anthropogenic activities, in particular industrial-scale forestry. The impacts of logging activities on primary boreal forests may also strongly differ from those of wildfires, the dominant stand-replacing natural disturbance in these forests. Since industrial-scale forestry is driven by economic motives, there is a risk that stands of higher economic value will be primarily harvested, thus threatening habitats, and functions related to these forests. Hence, the objective of this study was to identify the main attributes differentiating burned and logged stands prior to disturbance in boreal forests. The study territory lies in the coniferous and closed-canopy boreal forest in Québec, Canada, where industrial-scale logging and wildfire are the two main stand-replacing disturbances. Based on Québec government inventories of primary forests, we identified 427 transects containing about 5.5 circular field plots/transect that were burned or logged shortly after being surveyed, between 1985 and 2016. Comparative analysis of the main structural and environmental attributes of these transects highlighted the strong divergence in the impact of fire and harvesting on primary boreal forests. Overall, logging activities mainly harvested forests with the highest economic value, while most burned stands were low to moderately productive or recently disturbed. These results raise concerns about the resistance and resilience of remnant primary forests within managed areas, particularly in a context of disturbance amplification due to climate change. Moreover, the majority of the stands studied were old-growth forests, characterized by a high ecological value but also highly threatened by anthropogenic disturbances. A loss in the diversity and functionality of primary forests, and particularly the old-growth forests, therefore adds to the current issues related to these ecosystems. Since 2013, the study area is under ecosystem-based management, which implies that there have been marked changes in forestry practices. Complementary research will be necessary to assess the capacity of ecosystem-based management to address the challenges identified in our study.
Gabriel Magnan, Eloïse LeStum-Boivin, Pierre Grondin, Maxime Asselin, Michelle Garneau, Yves Bergeron, Martin Lavoie. Comprendre l'évolution des tourbières de la pessière à mousses de l'Ouest. 2020. Avis de recherche forestière no 150.
Les tourbières abondent dans le sous-domaine bioclimatique de la pessière à mousses de l’Ouest et certaines d’entre elles sont recouvertes de forêts productives justifiant une récolte de matière ligneuse. Les études paléoécologiques révèlent que l’évolution millénaire de cet écosystème est issue d’interactions complexes entre les feux, la topographie et le climat. Dans le contexte des changements climatiques, il est probable que les tourbières s’assècheront et seront colonisées davantage par les conifères. Elles pourraient donc devenir plus vulnérables aux feux, et ainsi transformer ces grands réservoirs de carbone en une importante source de gaz à effet de serre. Ces nouvelles connaissances permettront d’améliorer les pratiques sylvicoles, notamment en considérant la fonction de séquestration de carbone dans ces milieux.
Julie C. Aleman, Andy Hennebelle, Yves Bergeron, Adam A. Ali, Christopher Carcaillet, Josianne Landry, Olivier Blarquez, Pierre Grondin. The reconstruction of burned area
and fire severity using charcoal
from boreal lake sediments. 2020. Holocene 30(10):1400-1409
DOI : 10.1177/0959683620932979
Although lacustrine sedimentary charcoal has long been used to infer paleofires, their quantitative reconstructions require improvements of the calibration of their links with fire regimes (i.e. occurrence, area, and severity) and the taphonomic processes that affect charcoal particles between the production and the deposition in lake sediments. Charcoal particles >150?µm were monitored yearly from 2011 to 2016 using traps submerged in seven head lakes situated in flat-to-rolling boreal forest landscapes in eastern Canada. The burned area was measured, and the above-ground fire severity was assessed using the differentiated normalized burn ratio (dNBR) index, derived from LANDSAT images, and measurements taken within zones radiating 3, 15, and 30?km from the lakes. In order to evaluate potential lag effects in the charcoal record, fire metrics were assessed for the year of recorded charcoal recording (lag 0) and up to 5?years before charcoal deposition (lag 5). A total of 92 variables were generated and sorted using a Random Forest-based methodology. The most explanatory variables for annual charcoal particle presence, expressed as the median surface area, were selected. Results show that, temporally, sedimentary charcoal accurately recorded fire events without a temporal lag; spatially, fires were recorded up to 30?km from the lakes. Selected variables highlighted the importance of burned area and fire severity in explaining lacustrine charcoal. The charcoal influx was thus driven by fire area and severity during the production process. The dispersion process of particles resulted mostly of wind transportation within the regional (<30?km) source area. Overall, charcoal median surface area represents a reliable proxy for reconstructing past burned areas and fire severities.
Julien Beguin, Benjamin Andrieux, Yves Bergeron, David Paré, Pierre Grondin. Boreal-forest soil chemistry drives soil organic carbon bioreactivity along a 314-year fire chronosequence 2020. SOIL 6:195-213
DOI : 10.5194/soil-6-195-2020
Following a wildfire, organic carbon (C) accumulates in boreal-forest soils. The long-term patterns of accumulation as well as the mechanisms responsible for continuous soil C stabilization or sequestration are poorly known. We evaluated post-fire C stock changes in functional reservoirs (bioreactive and recalcitrant) using the proportion of C mineralized in CO2 by microbes in a long-term lab incubation, as well as the proportion of C resistant to acid hydrolysis. We found that all soil C pools increased linearly with the time since fire. The bioreactive and acid-insoluble soil C pools increased at a rate of 0.02 and 0.12?MgC?ha?1?yr?1, respectively, and their proportions relative to total soil C stock remained constant with the time since fire (8?% and 46?%, respectively). We quantified direct and indirect causal relationships among variables and C bioreactivity to disentangle the relative contribution of climate, moss dominance, soil particle size distribution and soil chemical properties (pH, exchangeable manganese and aluminum, and metal oxides) to the variation structure of in vitro soil C bioreactivity. Our analyses showed that the chemical properties of podzolic soils that characterize the study area were the best predictors of soil C bioreactivity. For the O layer, pH and exchangeable manganese were the most important (model-averaged estimator for both of 0.34) factors directly related to soil organic C bioreactivity, followed by the time since fire (0.24), moss dominance (0.08), and climate and texture (0 for both). For the mineral soil, exchangeable aluminum was the most important factor (model-averaged estimator of ?0.32), followed by metal oxide (?0.27), pH (?0.25), the time since fire (0.05), climate and texture (?0 for both). Of the four climate factors examined in this study (i.e., mean annual temperature, growing degree-days above 5??C, mean annual precipitation and water balance) only those related to water availability – and not to temperature – had an indirect effect (O layer) or a marginal indirect effect (mineral soil) on soil C bioreactivity. Given that predictions of the impact of climate change on soil C balance are strongly linked to the size and the bioreactivity of soil C pools, our study stresses the need to include the direct effects of soil chemistry and the indirect effects of climate and soil texture on soil organic matter decomposition in Earth system models to forecast the response of boreal soils to global warming.
Gabriel Magnan, Eloïse LeStum-Boivin, Michelle Garneau, Yves Bergeron, Pierre Grondin. Long-Term Carbon Sequestration
in Boreal Forested Peatlands
in Eastern Canada 2020. Ecosystems
DOI : 10.1007/s10021-020-00483-x
Forested peatlands are widespread in the boreal landscape, but their role as carbon (C) pools remains poorly documented. In this study, we investigated the long-term C sequestration function of boreal forested bogs in relation to fires in eastern Canada. Results show that the forested peatlands comprise substantial peat C mass reaching values similar to open peatlands. At the six studied peatland sites, the amount of C stored in peat (62–172 kg C m?2) exceeds substantially the aboveground tree biomass C (1.5–5.3 kg C m?2). The C locked up in live conifers on the peatlands corresponds only to a small fraction of the C stored in peat (1–6%). In comparison, the shallow organic layer (??30 cm) in the adjacent paludifying stands store 10.8 kg C m?2 on average, which is about twice as much C as the live conifers. Long-term apparent C accumulation rates are relatively low in the studied forested bogs (mean: 15.9 g C m?2 y?1), suggesting that these ecosystems have lower C sequestration potential than non-forested bogs over millennia. The charcoal data suggest that past local fires reduced C sequestration rates, but these peatlands burn much less frequently than upland forests and are thus more efficient long-term C stores. This study highlights the importance of boreal forested peatlands as C reservoirs and helps understanding how fires, logging and climate change can affect their C sequestration function. These findings have important implications for ecosystem management that aims at maximizing C sequestration at the landscape level to mitigate climate change.
Martin-Philippe Girardin, Jeanne Portier, Cécile C. Remy, Adam A. Ali, Jordan Paillard, Olivier Blarquez, Hugo Asselin, Sylvie Gauthier, Yves Bergeron, Pierre Grondin. Coherent signature of warming-induced extreme sub-continental boreal wildfire activity 4,800 and 1,100 years BP. 2019. Environmental Research Letters 14(12):124042
DOI : 10.1088/1748-9326/ab59c9
Climate changes are expected to progressively increase extreme wildfire frequency in forests. Finding past analogs for periods of extreme biomass burning would provide valuable insights regarding what the effects of warming might be for tree species distribution, ecosystem integrity, atmospheric greenhouse gas balance, and human safety. Here, we used a network of 42 lake-sediment charcoal records across a ~2000 km transect in eastern boreal North America to infer widespread periods of wildfire activity in association with past climate conditions. The reconstructed fluctuations in biomass burning are broadly consistent with variations in ethane concentration in Greenland polar ice cores. Biomass burning fluctuations also significantly co-varied with Greenland temperatures estimated from ice cores, at least for the past 6000 years. Our retrospective analysis of past fire activity allowed us to identify two fire periods centered around 4800 and 1100 BP, coinciding with large-scale warming in northern latitudes and having respectively affected an estimated ~71% and ~57% of the study area. These two periods co-occurred with widespread decreases in mean fire-return intervals. The two periods are likely the best analogs for what could be anticipated in terms of impacts of fire on ecosystem services provided by these forests in coming decades.
Eloïse LeStum-Boivin, Gabriel Magnan, Michelle Garneau, Yves Bergeron, Nicole J. Fenton, Pierre Grondin. Spatiotemporal evolution of paludification associated with autogenic
and allogenic factors in the black spruce–moss boreal forest of
Québec, Canada. 2019. Quaternary Research 91(2):650-664
DOI : 10.1017/qua.2018.101
Paludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)–moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (?50 cm) and thick forest humus (<40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment of Sphagnum in microdepressions. Paludification resulted in the decline of some coniferous species such as Abies balsamea and Pinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.
Gabriel Magnan, Eloïse LeStum-Boivin, Yves Bergeron, Michelle Garneau, Pierre Grondin, Nicole J. Fenton. Holocene vegetation dynamics and hydrological variability in forested peatlands of the Clay Belt, eastern Canada, reconstructed using a palaeoecological approach. 2018. Boreas
DOI : 10.1111/bor.12345
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial?scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water?table depths were inferred using testate amoeba analyses. High?resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present?day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.
Pierre Grondin, Véronique Poirier, Sylvie Gauthier, Patrice Tardif, Yan Boucher, Yves Bergeron. Have some landscapes in the eastern
Canadian boreal forest moved beyond their
natural range of variability? 2018. Forest Ecosystems 5(1):30
DOI : 10.1186/s40663-018-0148-9
In the context of ecosystem management, the present study aims to compare the natural and the present-day forested landscapes of a large territory in Quebec (Canada). Using contemporary and long-term fire cycles, each natural forest landscape is defined according to the variability of its structure and composition, and compared to the present-day landscape. This analysis was conducted to address the question of whether human activities have moved these ecosystems outside the range of natural landscape variability.
Andy Hennebelle, Julie C. Aleman, Yves Bergeron, Daniel Borcard, Pierre Grondin, Olivier Blarquez, Adam A. Ali. Using paleoecology to improve reference conditions for ecosystem-based
management in western spruce-moss subdomain of Québec. 2018. For. Ecol. Manage. 430:157-165
DOI : 10.1016/j.foreco.2018.08.007
Ecosystem based management in Québec is framed by reference conditions defining percentage of old-growth forest (>100-years-old) and forest composition characterizing pre-industrial forest landscapes. In the western spruce-moss bioclimatic subdomain (154?184?km2) a fire cycle estimated at 150?years was used to target that 49% of the landscape has to be composed of old-growth forest. Yet, this target was developed using past (19th–20th C.) climate and vegetation data and assume that environment and ecosystem processes are homogeneous for the entire western spruce-moss bioclimatic subdomain. The wide spatial and narrow temporal windows limit the application of reference conditions under ongoing climate change.
Our aim was to classify current vegetation heterogeneity of the western spruce-moss subdomain into homogeneous zones and to study the long-term history of fire and vegetation within these zones. This approach will help to refine forest management targets that are based upon short-term records by providing a long-term perspective that is needed for the forests to be managed within their natural range of variability. Modern forest inventories data were used along with climate, physical variables, and natural and human disturbances to study the current vegetation-environment interactions among the western spruce-moss subdomain. We also used 18 published sedimentary pollen and charcoal series to reconstruct Holocene vegetation and Fire Return Intervals (FRI).
Contemporary data revealed 4 zones with homogeneous interactions between vegetation and environment. Pollen analysis revealed three long-term vegetation paths: early successional species dominance, late to early species transition and late successional species dominance. These suggest that modern forest composition results from Holocene trajectories occurring within each zone. Holocene mean FRI (mFRI) ranged from 222 to 258 years across the subdomain, resulting in old-growth forests ranging between 64% and 68%, depending upon the zone.
Paleoecological and contemporary results support that to make forest management more sustainable, current landscape heterogeneity that arises from millennial forest composition trajectories and fire cycle dynamics should be taken into account by down-scaling the previously established reference conditions.
Benjamin Andrieux, Julien Beguin, Yves Bergeron, David Paré, Pierre Grondin. Drivers of postfire soil organic carbon accumulation in the
boreal forest. 2018. Global Change Biology 24(10):4797-4815
DOI : 10.1111/gcb.14365
The accumulation of soil carbon (C) is regulated by a complex interplay between abiotic and biotic factors. Our study aimed to identify the main drivers of soil C accumulation in the boreal forest of eastern North America. Ecosystem C pools were measured in 72 sites of fire origin that burned 2–314 years ago over a vast region with a range of ? mean annual temperature of 3°C and one of ? 500 mm total precipitation. We used a set of multivariate a priori causal hypotheses to test the influence of time since fire (TSF), climate, soil physico?chemistry and bryophyte dominance on forest soil organic C accumulation. Integrating the direct and indirect effects among abiotic and biotic variables explained as much as 50% of the full model variability. The main direct drivers of soil C stocks were: TSF >bryophyte dominance of the FH layer and metal oxide content >pH of the mineral soil. Only climate parameters related to water availability contributed significantly to explaining soil C stock variation. Importantly, climate was found to affect FH layer and mineral soil C stocks indirectly through its effects on bryophyte dominance and organo?metal complexation, respectively. Soil texture had no influence on soil C stocks. Soil C stocks increased both in the FH layer and mineral soil with TSF and this effect was linked to a decrease in pH with TSF in mineral soil. TSF thus appears to be an important factor of soil development and of C sequestration in mineral soil through its influence on soil chemistry. Overall, this work highlights that integrating the complex interplay between the main drivers of soil C stocks into mechanistic models of C dynamics could improve our ability to assess C stocks and better anticipate the response of the boreal forest to global change.
Cécile Fouquemberg, Cécile C. Remy, Benjamin Andrieux, Gabriel Magnan, Benoit Brossier, Yves Bergeron, Hugo Asselin, Brigitte Talon, Lisa Bajolle, Adam A. Ali, Olivier Blarquez, Pierre Grondin. Guidelines for the use and interpretation of paleofire reconstructions based on various archives and proxies. 2018. Quaternary Research 193:312-322
DOI : 10.1016/j.quascirev.2018.06.010
We present a comparative analysis of fire reconstructions from tree rings and from wood charcoal preserved in forest soils, peat and lake sediments. Our objective is to highlight the benefits and limits of different archives and proxies to reconstruct fire histories. We propose guidelines to optimize proxy and archive choice in terms of spatial and temporal scales of interest. Comparisons were performed for two sites in the boreal forest of northeastern North America. Compared to others archives, tree-ring analysis remains the best choice to reconstruct recent fires (<1000 years). For longer periods (from several centuries to millennia), lake charcoal can be used to reconstruct regional or local fire histories depending on the method used, but the focus should be on historical trends rather than on the identification of individual fire events. Charcoal preserved in peat and soils can be used to identify individual fire, but sometimes cover shorter time periods than lake archives.
Carole Bastianelli, Julien Beguin, Yves Bergeron, Adam A. Ali, Christelle Hely-Alleaume, David Paré, Pierre Grondin. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties. 2017. Biogeosciences 14:3445-3459
DOI : 10.5194/bg-14-3445-2017
At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.
Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental parameters (moisture, radiation rate, redox conditions, etc.). Our data underline significant differences in soil biogeochemistry under different forest ecosystems and reveal the importance of interactions in the soil–vegetation–climate system for the determination of soil composition.
Cécile C. Remy, Yves Bergeron, Hugo Asselin, Martin Lavoie, France Oris, Adam A. Ali, Christelle Hely-Alleaume, Martin-Philippe Girardin, Pierre Grondin. Wildfire size alters long-term vegetation trajectories in boreal forests of eastern North America. 2016. J. of Biogeography 43(12):vv
DOI : 10.1111/jbi.12921
Yves Bergeron, Daniel Borcard, Sylvie Gauthier, Pierre Grondin, Patrice Tardif, Jean Hotte. Drivers of contemporary landscape vegetation
heterogeneity in the Canadian boreal forest:
Integrating disturbances (natural and human)
with climate and physical environment. 2015. Ecoscience 21(3-4):340-373
DOI : 10.2980/21-(3-4)-3696
This study aims to demonstrate that contemporary landscape vegetation heterogeneity is controlled by a
combination of natural disturbances with other sets of explanatory variables. Integration of these drivers should be
considered the key to explaining vegetation changes along ecological gradients characterizing the boreal forest. Forest
inventory plots and maps produced from about 1970 to 2000 were used to characterize a large area (175 000 km2)
according to 3 vegetation themes constituting distinct aspects of forest community composition (tree species, forest types,
and potential vegetation?successional stages) and 4 sets of explanatory variables (climate, natural disturbances, physical
environment, and human disturbances). Canonical ordinations were performed to define ecological gradients as well as
the overlap between vegetation themes and sets of explanatory variables along each gradient. For each vegetation theme,
we quantified the relative proportion of vegetation variation explained by unique as well as combined sets of explanatory
variables. The landscape vegetation heterogeneity described by species and potential vegetation?successional stage was
mostly explained by natural disturbances and climate in association with other sets of explanatory variables. The influence
of physical environment was higher for landscape vegetation heterogeneity related to forest types than for the other themes,
but this theme also was dominated by natural disturbances and climate. Compared to natural sets of explanatory variables,
human disturbances played a secondary but significant role in the 3 vegetation themes. This research contributes to a better
understanding of the relationship between vegetation and the factors underlying its development in the boreal forest and
represents an important step toward ecosystem-based management.
Olivier Blarquez, Yves Bergeron, Bianca Fréchette, Adam A. Ali, Pierre Grondin, Christelle Hely-Alleaume, Martin-Philippe Girardin. Regional paleofire regimes
affected by non-uniform climate,
vegetation and human drivers. 2015. Nature 5:13356
DOI : 10.1038/srep13356
Climate, vegetation and humans act on biomass burning at different spatial and temporal scales. In this study, we used a dense network of sedimentary charcoal records from eastern Canada to reconstruct regional biomass burning history over the last 7000 years at the scale of four potential vegetation types: open coniferous forest/tundra, boreal coniferous forest, boreal mixedwood forest and temperate forest. The biomass burning trajectories were compared with regional climate trends reconstructed from general circulation models, tree biomass reconstructed from pollen series, and human population densities. We found that non-uniform climate, vegetation and human drivers acted on regional biomass burning history. In the open coniferous forest/tundra and dense coniferous forest, the regional biomass burning was primarily shaped by gradual establishment of less climate-conducive burning conditions over 5000 years. In the mixed boreal forest an increasing relative proportion of flammable conifers in landscapes since 2000?BP contributed to maintaining biomass burning constant despite climatic conditions less favourable to fires. In the temperate forest, biomass burning was uncoupled with climatic conditions and the main driver was seemingly vegetation until European colonization, i.e. 300?BP. Tree biomass and thus fuel accumulation modulated fire activity, an indication that biomass burning is fuel-dependent and notably upon long-term co-dominance shifts between conifers and broadleaf trees.
Yassine Messaoud, Yves Bergeron, Hugo Asselin, Pierre Grondin. Competitive Advantage of Black Spruce Over Balsam Fir in Coniferous Boreal Forests of Eastern North America Revealed by Site Index. 2014. Forest Science 60(1):57-62
DOI : 10.5849/forsci.12-004
Pierre Grondin, Daniel Borcard, Yves Bergeron, Jean Noël, Sylvie Gauthier. A new approach to ecological land classification for the Canadian boreal forest that integrates disturbances. 2013. Landscape Ecology
DOI : 10.1007/s10980-013-9961-2
Traditional approaches to ecological land classification (ELC) can be enhanced by integrating, a priori, data describing disturbances (natural and human), in addition to the usual vegetation, climate, and physical environment data. To develop this new ELC model, we studied an area of about 175,000 km2 in the Abies balsamea–Betula papyrifera and Picea mariana-feathermoss bioclimatic domains of the boreal forest of Québec, in eastern Canada. Forest inventory plots and maps produced by the Ministère des Ressources naturelles du Québec from 1970 to 2000 were used to characterize 606 ecological districts (average area 200 km2) according to three vegetation themes (tree species, forest types, and potential vegetation-successional stages) and four sets of explanatory variables (climate, physical environment, natural and human disturbances). Redundancy, cluster (K-means) and variation partitioning analyses were used to delineate, describe, and compare homogeneous vegetation landscapes. The resulting ELC is hierarchical with three levels of observation. Among the 14 homogeneous landscapes composing the most detailed level, some are dominated by relatively young forests originating from fires dating back to the period centered on 1921. In others, forest stands are older (fires from the period centered on 1851), some are under the influence of insect outbreaks and fires (southern part), while the rest are strongly affected by human activities and Populus tremuloides expansion. For all the study area and for parts of it, partitioning reveals that natural disturbance is the dominant data set explaining spatial variation in vegetation. However, the combination of natural disturbances, climate, physical environment and human disturbances always explains a high proportion of variation. Our approach, called “ecological land classification of homogeneous vegetation landscapes”, is more comprehensive than previous ELCs in that it combines the concepts and goals of both landscape ecology and ecosystem-based management.
Nelson Thiffault, François Hébert, Richard Fournier, Alison Munson, Robert L. Bradley, Yves Bergeron, Nicole J. Fenton, Pierre Grondin, Gilles Joanisse, David Paré, Osvaldo Valeria. Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model. 2013. Forests 4:613-631
DOI : 10.3390/f4030613
Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.
Yves Bergeron, Sylvie Gauthier, Alain Leduc, Thuy Nguyen-Xuan, Pierre Drapeau, Pierre Grondin. Developing Forest Management Strategies Based on Fire Regimes in Northwestern Quebec, Canada. 2004. Chapter 18. In A.H. Perera, L.J. Buse et M.G. Weber. Emulating Natural Forest Landscape Disturbances : Concepts and Applications. Columbia University Press, New York, NY.
DOI : 10.7312/pere12916
voir les plus récentes
Léa Blanchette, Guillaume de Lafontaine, Pierre Grondin. Origine et dynamique des bétulaies blanches marginales en forêt boréale 17e colloque annuel du CEF, Université du Québec en Outaouais (2024-05-03)
Pierre Grondin, Luc Sirois, Guillaume de Lafontaine. L'origine des landes alpines en forêt boréale : une approche biogéographique 17e colloque annuel du CEF, Université du Québec en Outaouais (2024-05-02)
Maxence Soubeyrand, Fabio Gennaretti, Pierre Grondin, Yves Bergeron, Philippe Marchand. Effet du climat et de la compétition sur la migration future vers le nord d'espèces de feuillus tempérés dans la forêt boréale mixte 17e colloque annuel du CEF, Université du Québec en Outaouais (2024-05-02)
Guillaume de Lafontaine, Pierre Grondin. Trajectoire écologique de l'enfeuillement par le peuplier faux-tremble au Bas-St-Laurent révélée par une approche rétrospective 17e colloque annuel du CEF, Université du Québec en Outaouais (2024-05-02)
Pierre Grondin, Martin Lavoie, Maude Demers, Ana Verhulst-Casanova, Laurie-Anne Chabot, Fabio Gennaretti, Catherine Caron. Conséquences des activités anthropiques sur la dynamique naturelle des tourbières forestières des Basses-Terres du Saint-Laurent (Québec) 3e rencontre annuelle du Laboratoire International de Recherche sur les Forêts Froides. Station touristique Duchesnay, Québec. (2023-10-04)
Achraf Ammar, Youssef Ben Slim, Ahmed Koubaa, Dorra Gassara, Yves Bergeron, Pierre Grondin, David Voyer, Alexis Achim. Évaluation non destructive de l’Impact de la carie dans le bois de l’érable à sucre sur ses propriétés chimiques physiques, et mécaniques 3e rencontre annuelle du Laboratoire International de Recherche sur les Forêts Froides. Station touristique Duchesnay, Québec. (2023-10-04)
Maxence Soubeyrand, Fabio Gennaretti, Olivier Blarquez, Pierre Grondin, Philippe Marchand. Effet du climat et de la compétition sur la migration future vers le nord d'espèces de feuillus tempérés dans la forêt boréale mixte 16e colloque annuel du CEF, Université de Montréal (2023-05-08)
Pierre Grondin, Andréane Garant, Julien Beguin, Amira Fetouab , Maisa De Noronha, Dominique Arseneault. Forêts paludifiées, sols et changements climatiques Rendez-vous de la connaissance en aménagement forestier durable (2022-04-05)
Achraf Ammar, Ahmed Koubaa, Yves Bergeron, Dorra Gassara, Pierre Grondin. Potentiel de la tomographie acoustique pour la caractérisation non destructive de la proportion de la carie et son impact sur le module d’élasticité du bois de l’érable à sucres 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Pierre Grondin Partenaire du MFFP 23e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue (2021-12-07)
Pierre Grondin, Maxence Martin, Hubert Morin, Yan Boucher. La tordeuse des bourgeons de l’épinette : moteur de la dynamique des vieilles forêts boréales et source d’inspiration pour l’aménagement écosystémique? Les Rendez-vous de la connaissance en aménagement forestier durable MFFP - Les ravageurs forestiers (2021-05-18)
Julia Cigana, Guillaume de Lafontaine, Pierre Grondin, Yves Bergeron. Dynamique holocène et potentiel d’expansion de l’érablière à sucre la plus nordique en Abitibi-Témiscamingue 22e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, complètement virtuel (2020-12-02)
Raphaël Chavardes, Fabio Gennaretti, Xavier Cavard, Pierre Grondin, Lorena Balducci, Hubert Morin, Alain Leduc, Ari Kainelainen, Danielle Charron, T. Châtellier, Yves Bergeron. Le mélange des espèces dans le peuplement peut-il atténuer la vulnérabilité des forêts boréales aux changements climatiques et aux épidémies d’insectes ? 22e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, complètement virtuel (2020-12-02)
Evick Mestre, Yves Bergeron, Rock Ouimet, Pierre Grondin. Potentiel de migration des populations nordiques d’érable à sucre dans l’Ouest du Québec 21e colloque de la Chaire AFD. Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Québec. (2019-11-30)
Pierre Grondin Hétérogénéité paysagère contemporaine d'une portion de la forêt boréale québécoise et implications pour l'aménagement écosystémique. Soutenance thèse (2014-12-09)
Pierre Grondin La classification écologique et l'aménagement écosystémique : des liens à développer. La classification écologique et l'aménagement écos (2005-12-06)
Pierre Grondin The landscapes of the boreal forest are controlled by one or by a combination of variables ? 5thNorth American Forest Ecology Workshop, Aylmer, Québec, Canada.
Pierre Grondin Survol de quelques enjeux de composition forestière de la forêt mélangée et de la forêt résineuse 74ième congrès annuel de l’ACFAS, Colloque C-643 Définition des enjeux régionaux dans la mise en place de l’aménagement écosystemique des forêts du Québec. Université McGill, Montréal, Québec, Canada.